
1

MICROGATE SERIAL COMMUNICATIONS
SOFTWARE DEVELOPMENT KIT

WINDOWS GUIDE

MicroGate Systems, Ltd

http://www.microgate.com

MicroGate® and SyncLink® are registered trademarks of MicroGate Systems, Ltd.
Copyright © 2012-2017 MicroGate Systems, Ltd. All Rights Reserved

2

CONTENTS
Preface ... 6

Supported Versions ... 6

Required Knowledge .. 6

Overview .. 7

Software Installation ... 9

Software Removal .. 9

Hardware Configuration and Installation .. 10

Serial Interface Selection ... 10

RS-232 .. 10

V.35 .. 10

RS-422/RS-485 ... 10

Hardware Installation .. 10

PCI Cards .. 11

USB Adapter... 11

Verifying Hardware and Driver Installation ... 12

Windows Device Manager ... 12

SyncLink Device Properties .. 13

Trace Utility ... 17

Device Instances and Names ... 18

Location Locked and Device Locked Instances .. 18

Serial API Names .. 18

Removing Device Instances of Non-present Hardware ... 19

Serial Device Connection ... 20

Standard Cables ... 20

Custom Cables ... 21

Software Development Kit (SDK) Components ... 22

Run Time Files .. 22

Serial API Programming ... 23

Open/Close Device .. 23

Configure Device .. 24

Receiving Data ... 26

Sending Data .. 28

3

Waiting for All Data Sent ... 29

Asynchronous API Notification .. 30

API Function Reference ... 31

MgslCancelGetTraceEvent ... 32

MgslCancelGetWaitGpio.. 33

MgslCancelReceive .. 34

MgslCancelTransmit .. 35

MgslCancelWaitEvent .. 36

MgslClose ... 37

MgslEnableReceiver... 38

MgslEnableTransmitter ... 39

MgslEnumeratePorts ... 40

MgslGetAssignedResources ... 41

MgslGetGpio .. 42

MgslGetOption .. 43

MgslGetParams.. 44

MgslGetPortConfigEx ... 45

MgslGetSerialSignals.. 46

MgslGetTraceEvent ... 47

MgslGetTraceLevel .. 48

MgslOpen... 49

MgslOpenByName ... 50

MgslOpenTraceHandle .. 51

MgslPutTraceEvent .. 52

MgslReceive ... 53

MgslRead ... 55

MgslReadWithStatus ... 57

MgslResetTraceBuffers .. 58

MgslSetIdleMode ... 59

MgslSetGpio ... 60

MgslSetOption ... 61

MgslSetParams .. 63

MgslSetPortConfigEx ... 64

MgslSetSerialSignals .. 65

4

MgslSetTraceLevel ... 66

MgslTransmit ... 67

MgslWaitEvent .. 69

MgslWaitGpio .. 70

MgslWaitAllSent .. 71

MgslWrite .. 73

API Structure Reference .. 74

GPIO_DESC structure ... 75

MGSL_ASSIGNED_RESOURCES structure .. 76

MGSL_PARAMS structure .. 77

MGSL_PORT_CONFIG_EX structure ... 83

MGSL_RECEIVE_REQUEST structure .. 84

General Purpose I/O .. 85

Serial Protocol Overview ... 86

Framing and Transparency .. 86

Synchronization ... 86

Timing and Clock Source .. 86

HDLC/SDLC ... 86

Asynchronous .. 89

Isochronous ... 89

Raw Synchronous .. 90

Monosync and Bisync .. 91

Time Division Multiplexing (TDM) ... 93

TDM Signal Mapping .. 95

Using TDM Protocol with Serial API ... 95

Serial Encoding .. 98

Baud Rate Generator ... 99

DPLL Clock Recovery .. 100

Serial Encoding with DPLL .. 101

Preamble with DPLL ... 101

Frequency Synthesizer ... 102

Windows Communication API (COM Port Mode) ... 105

Device Names .. 105

5

6

PREFACE

SUPPORTED VERSIONS

The serial API supports these 32-bit and 64-bit Windows versions:

Windows XP (Server 2003/2003R2)
Windows Vista (Server 2008)
Windows 7 (Server 2008R2)
Windows 8 (Server 2012)
Windows 8.1 (Server 2012R2)
Windows 10 (Server 2016)

REQUIRED KNOWLEDGE

Developing with SyncLink devices on Windows requires the following knowledge:

1. C programming

2. Basic Windows administration

3. Serial communication details for target application

4. Reading supplied MicroGate documentation

MicroGate offers paid consulting and development services for projects where this knowledge is absent. Contact

MicroGate for details.

7

OVERVIEW
This guide describes the use of MicroGate serial communication devices with the Windows operating system.

Serial communication transfers data between systems similar to network devices like Ethernet and WiFi, but using

different physical characteristics and protocols. There are many different types of serial communications and a

successful connection requires compatible physical characteristics and protocols for all participating systems. The

SyncLink family of serial devices may be configured for a variety of physical characteristics and protocols.

Correctly installing and configuring a SyncLink serial device requires a description of the physical characteristics

and protocols required for the specific application. Physical characteristics include the electrical signal

specification, connector types, signal pin assignments and cable wiring. Protocols include data signal format, clock

signal source and a description of control and status signal functions if applicable. These details are application

specific and must be obtained by the user of the SyncLink serial device.

Once application specific details are known the serial device can be configured and installed. For PCI serial cards

this includes configuration of jumpers and installation into a compatible PCI system slot. USB to Serial converters

do not have jumper settings and are connected to system USB ports with USB cables. Next, a device driver must be

installed in the system. The device driver is software that provides an interface between the hardware and the

operating system. The final step is configuring the application that uses the hardware.

Applications access the serial device through an application programming interface (API). Two levels of API are

provided: a low level API to completely control detailed operation and a higher level (link layer) API that performs

many protocol operations at the driver level.

Windows Host System

SyncLink Hardware

SyncLink Device Driver (MGHDLC.SYS)

Serial API DLL (MGHDLC.DLL)

Low Level Serial

Application

Link Layer

Application

Serial A
P

I

Lin
k Layer A

P
I

FIGURE 1 SOFTWARE OVERVIEW DIAGRAM

8

This document only covers the lower level serial API. The Link Layer API is documented in the Windows help file

hdlcapi\docs\llapi.chm.

The remainder of this document describes the procedures listed above in detail. It is important to obtain all

application specific details, documentation and specifications so the serial device can be correctly configured.

Without these user provided details, correct operation cannot be achieved.

9

SOFTWARE INSTALLATION
Before using or installing SyncLink hardware, install supporting software and device drivers. The MicroGate

software package is included on media shipped with your hardware, and the latest version can be downloaded

from:

http://www.microgate.com/ftp/hdlcapi.sdk/hdlcsdk.exe

hdlcsdk.exe is a self extracting executable that expands by default to c:\hdlcapi. Run the package from a

command line or from the Windows explorer. The expanded package contains:

rtk\drivers\winXP-8.1\win32 drivers for 32-bit Windows XP/Server 2002 to 8.1/Server 2012R2

rtk\drivers\winXP-8.1\win64 drivers for 64-bit Windows XP/Server 2002 to 8.1/Server 2012R2

rtk\drivers\win10\win32 drivers for 32-bit Windows 10

rtk\drivers\win10\win64 drivers for 64-bit Windows 10, Server 2016

rtk\tools\win32 32-bit support tools

rtk\tools\win64 64-bit support tools

See supported Windows versions at start of this document for more details.

Run setup.exe in the drivers directory as the Administrator user. This installs drivers so Windows can

automatically detect and support SyncLink hardware. Setup also updates previously installed devices to the latest

drivers.

C:\hdlcapi\rtk\drivers\>setup

After software installation, install hardware as described in the Hardware Installation section and reboot the

system. Windows automatically detects the hardware and installs drivers for each device. If Windows does not find

the drivers automatically, manually specify the search location as the above directories and follow the displayed

instructions to complete device installation.

SOFTWARE REMOVAL

Run setup.exe in the appropriate directory with the /u option to remove all device instances and the driver

packages.

C:\hdlcapi\rtk\drivers>setup /u

10

HARDWARE CONFIGURATION AND INSTALLATION
This section describes the physical configuration and installation of the serial device. This must match the

application specific requirements provided by the user.

SERIAL INTERFACE SELECTION

The SyncLink serial device has a 25 pin connector for each serial port. This connector can be configured for

different electrical specifications. The three options are: RS-232 (single ended signals), V.35 (combined single

ended and differential signals) and RS-422/RS-485 (differential signals). The selection of interface type is controlled

by jumper settings on PCI cards and through software for the USB to serial device.

RS-232

RS-232 (also called EIA-232) is a specification that defines single ended signals (one wire per signal) for use in low

data rate applications, usually less than 120Kbps. This is common in legacy applications such as connecting to

analog phone line MODEMs. The standard defines pin assignments on a 25 pin connector.

V.35
V.35 is a specification that defines a combination of single ended signals (one wire per signal) and differential

signals (two wires per signal). Data and clock signals are differential for high speed. Control and status signals are

single ended. The standard defines pin assignments on a 34-pin “block” connector. An adapter cable available from

MicroGate is required to convert the device’s 25 pin connector to a standard V.35 34 pin connector.

RS-422/RS-485
RS-422 (also called EIA-422) is an electrical specification for differential signals (two wires per signal). RS-485 is an

improved specification that is compatible with RS-422. Neither standard specifies pin assignments or a connector.

The SyncLink card assigns RS-422/485 pins using the RS-530 specification for a 25 pin connector. MicroGate offers

adapter cables to convert the RS-530 pin assignments to RS-449 (37 pins) or X.21 (15 pins).

HARDWARE INSTALLATION

The exact hardware installation procedure depends on the hardware and the system type. Some hardware plugs

into external system ports, other hardware is installed into internal expansion slots on the system. Refer to the

hardware user’s guide (PDF) that came with your hardware for detailed specification and configuration

information. Hardware user’s guides are also available at www.microgate.com

11

PCI CARDS
PCI and PCI Express cards are installed into internal expansion slots on the host system. The card type must match

the expansion slot type. SyncLink PCI cards are “universal” and are compatible with 3.3V, 5V, 32-bit, 64-bit and PCI-

X expansion slots. Do not confuse PCI-X with PCI Express, they are different slot types. SyncLink PCI Express cards

are compatible with 1x, 4x, and 16x PCI Express expansion slots.

¶ Verify card interface selection jumpers (RS232,V.35,RS422) are correctly installed.

¶ Shutdown system.

¶ Remove system case cover.

¶ Insert adapter in compatible slot.

¶ Secure card bracket with screw or clamp.

¶ Replace system case cover.

¶ Start system.

USB ADAPTER
The USB serial adapter plugs into a host USB port using the supplied Type B male to Type A male USB cable.

SyncLink USB should be plugged into a USB 2.0 or later Hi-speed (480Mbps) USB port. Operating on a slower USB

port is not recommended. Install directly into a host USB port instead of a USB hub for better performance.

SyncLink USB requires 500mA of power from the USB port, which is standard and supported by most USB ports.

Some USB ports may not provide a full 500mA, such as unpowered hubs or ports in small mobile devices.

12

VERIFYING HARDWARE AND DRIVER INSTALLATION
Before developing an application, verify the correct installation of serial hardware and device drivers.

WINDOWS DEVICE MANAGER

The primary tool for verification is the Windows Device Manager, an administrative tool included with Windows.

This tool displays a tree diagram of hardware devices arranged by type or connection.

Starting Windows Device Manager

The Windows device manager can be started from a command prompt or through the Windows Control Panel. The

device manager must be run with Administrative privilege.

Windows XP Control Panel

For Windows XP, click the Start button and select Control Panel. Double click the System icon. Select the

Hardware tab then click the Device Manager button.

Windows Vista, Windows 7 Control Panel

For Windows Vista and Windows 7, click the Start button and select Control Panel. Type “device manager” into the

search box in the upper right of the Control Panel window. Then select the Device Manager item in the search

results.

Command Prompt

To open a command prompt, click the Start button, select All Programs then Accessories and right click on

Command Prompt. Finally, select Run as administrator from the pop-up menu. If prompted for permission to

continue, select allow. In the command prompt, run the following command:

C:\>devmgmt.msc

Once the device manager is running, look for a branch labeled SyncLink Adapters.

If you do not see SyncLink Adapters, try selecting the Computer branch, click the Action menu and select the “Scan

for hardware changes” menu item. This should prompt Windows to detect new hardware and install drivers.

If you still do not see SyncLink Adapters, look for entries with a yellow question mark symbol labeled either “PCI

Simple Communications Controller” or “SyncLink USB”. Right click each of these entries and select “Update Driver”

from the pop-up menu and follow any displayed instructions. If for some reason Windows can’t find the drivers

automatically, manually specify the search location as the driver directory In the SDK package.

Once the SyncLink Adapter branch is present, expand the branch to display SyncLink devices. Devices with a yellow

symbol on the icon have a problem. If no yellow symbol is visible, the device and driver have been correctly

installed. Right click on a device entry and select Properties from the pop-up menu.

13

SYNCLINK DEVICE PROPERTIES
The SyncLink device properties in the Windows device manager displays device and driver information, configures

the device and allows testing the device. The device properties window has multiple tabs for different purposes.

GENERAL TAB

This tab displays the device status and location (slot or port number). If the device status is working properly then

proceed to the next tab. Otherwise note the error message for diagnosing an installation problem. The device

driver version and device names are displayed to the right of the card icon near the top.

14

ADVANCED TAB

The advanced tab contains device settings that take effect at system startup. Not all settings are available for all

SyncLink devices.

The Device pull down list includes one entry for each port on the device. The other settings apply to the currently

selected port.

Max Frame Size
This setting chooses the largest HDLC frame or block of data that can be sent or received in a single API call. 4096 is

the best choice for most applications. HDLC frames larger than 4K bytes should only be used with the CRC-32

frame check.

Serial Interface
Select the serial interface electrical specification (RS232, V.35, RS422, etc). This option is only available on the

SyncLink PCMCIA and USB devices. PCI cards select the interface with jumper settings. Choose the interface type

required by your application. Choosing the incorrect interface type prevents correct operation and may damage

the device.

Disable Input Termination (USB Only)
When checked, this option disables the input termination on the USB adapter serial interface when differential

modes are selected (RS422/RS530/V.35/X.21). Normally, differential inputs are terminated with 120 Ohms.

Disable RS422/485 Outputs when RTS is off.
Choose this option when the state of the RTS output signal should be used to control output drivers (enabled or

tri-state). An application controls RTS to manually tri-state drivers in a 2-wire half duplex (multidrop) environment.

Disable RS422/485 Outputs when not sending data.
Choose this option if outputs should be disabled (tri-state) when not sending data. Hardware automatically

controls driver outputs in a 2-wire half duplex (multidrop) environment.

15

DMA Buffer Size and DMA Buffer Count
These options control buffer allocation in the driver. Use 0 unless otherwise directed by Microgate support.

16

DIAGNOSTICS TAB

The Diagnostics tab allows you to test the device using an internal or external looback of data.

Devices with more than one port will have a pull down list of ports. Select the port to test before proceeding.

Devices with only one port will not have this list.

Select the Data Loopback Test type: Internal or External. The internal test does not access the serial connector

and only tests the ability of Windows to talk to the device. If external is chosen, install the loopback plug that came

with the device on the serial connector.

Then click the Start Test button. Send and receive data counts will start incrementing in the Test Status area. The

test continues until the Stop Test button is clicked. Check the Test Status area for any error indications.

17

TRACE UTILITY

A trace utility is provided in the run time kit for recording events during a communications session for diagnostics

purposes. The recorded events are saved to a selectable trace file that can be supplied to support staff. The

program is located in the RTK at the location:

rtk\tools\win32\mgsltrc.exe 32-bit Windows

rtk\tools\win64\mgsltrc.exe 64-bit Windows

Run the program from a command line or the Windows explorer. The user must have administrative privilege to

run the trace utility. The running trace program will appear as shown below.

1. Enter the desired output file name into the Trace File edit field.

2. Click the Set All button to enable all trace levels.

3. Select the desired port in the Port pull down list.

4. Click the Start Trace button to start the trace.

5. Perform the tasks to record (run application, connect, etc)

6. Click the Stop Trace button to stop the trace.

Supply the output file to support staff.

18

DEVICE INSTANCES AND NAMES

When hardware is first installed, Windows creates a unique collection of data for the hardware describing the

location, configuration and associated software. This data is called a device instance. Each device instance for

hardware present in the system is displayed in the Windows device manager. When hardware is removed from the

system, the device instance remains but is not displayed in the device manager.

LOCATION LOCKED AND DEVICE LOCKED INSTANCES
Devices with a unique serial number accessible to Windows (SyncLink USB) use a device instance tied to the

specific device called a device locked instance. PCI cards use a device instance tied to the location (PCI slot) called a

location locked instance.

Hardware with a device locked instance may be moved to any location (USB port) and the same device instance is

used. If the hardware is replaced, a new device instance is created for the new hardware with a different serial

number.

Hardware with a location locked instance (PCI cards) may be replaced with the same card type in the same location

and the same device instance is used. Moving hardware to a different location (PCI slot) creates a new device

instance.

SERIAL API NAMES
When drivers are installed for a SyncLink hardware device, a device name is assigned to the device instance. The

name is used to access the device with the serial API. The name is based on an instance number that is assigned

sequentially starting with one.

Example:

The first SyncLink GT4 PCI card is adapter number one, with device names MGMP1P1 to MGMP1P4.
The second SyncLink GT4 PCI card is adapter number two, with device names MGMP2P1 to MGMP2P4.

If a PCI card is moved to a different slot, a new device instance is created with a different device name and

applications using the original name will fail. The application must use the new name or the old device instance

must be removed before creating a new device instance with the old name.

Example:

The first SyncLink GT4 PCI card is adapter number one, with device names MGMP1P1 to MGMP1P4.
The second SyncLink GT4 PCI card is adapter number two, with device names MGMP2P1 to MGMP2P4.
If the first card is moved to a different PCI slot, it becomes MGMP3P1 to MGMP3P2.

To reuse the name MGMP1P1 to MGMP1P4 in the new location, the first device instance must be removed before

installing the card in the new location using these steps:

1. Remove hardware from system.

2. Start system and remove device instance. (see next section)

3. Install hardware in new location.

19

REMOVING DEVICE INSTANCES OF NON-PRESENT HARDWARE
Device instances of non-present hardware are not displayed in the device manager by default. The device manager

can be configured using an environment variable to display device instances of non-present hardware:

1. Set the environment variable devmgr_show_nonpresent_devices = 1.

2. Start device manager.

3. Select Show Hidden Devices item from View menu.

Setting environment variable in Windows XP

¶ Click the Start button in the lower left of the desktop

¶ Right click My Computer

¶ Select Properties from pop-up menu

¶ Click the Advanced tab

¶ Click the Environment Variables button near bottom of window

¶ In the System variables section, click the New button

¶ In the Variable name field, type devmgr_show_nonpresent_devices

¶ In the Variable value field, type 1

¶ Click the OK button to dismiss New System Variable window

¶ Click the OK button to dismiss Environment Variables window

¶ Click the OK button to dismiss System Properties window

Setting environment variable in Windows Vista and Windows 7

¶ Click the Start button in the lower left of the desktop

¶ Right click Computer

¶ Select Properties from pop-up menu

¶ Click the Advanced system settings in left side of window

¶ Click the Environment Variables button near bottom of window

¶ In the System variables section, click the New button

¶ In the Variable name field, type devmgr_show_nonpresent_devices

¶ In the Variable value field, type 1

¶ Click the OK button to dismiss New System Variable window

¶ Click the OK button to dismiss Environment Variables window

¶ Click the OK button to dismiss System Properties window

Be careful typing the variable name to ensure it is entered exactly the same as above.

Now non-present devices are displayed in the device manager with a grayed out icon. Uninstall the device instance

by right clicking on the non-present device and selecting Uninstall from the pop-up menu. Repeat this for all

grayed out devices in the SyncLink Adapters and SyncLink USB Service Ports branches of the device tree. Once the

non-present device instances have been removed, new hardware can be installed or old hardware moved to a new

location.

20

SERIAL DEVICE CONNECTION
Serial devices are either DTE (data terminal equipment) or DCE (data circuit-terminating equipment). A DTE device

connects directly to a DCE device. Connecting two DTE devices requires a special cross over cable or intermediate

device called a null MODEM. A DTE is usually a system consuming and generating data. A DCE is a device that

converts data into a format suitable for a communications medium like a phone line or radio link. The SyncLink

serial device is a DTE with a DSUB 25 pin male connector.

STANDARD CABLES
A cable connects the SyncLink device to another device. If the attached device is a DCE using a standard connector

(RS-232, V.35, RS-530, etc) then use a standard cable. In some cases, an adapter cable must be purchased from

MicroGate to convert the DB-25M connector to the appropriate standard connector. The adapter cable can either

plug directly to the attached device or can be used with a standard cable to increase the cable length if needed.

SyncLink
RS-232 DTE
(DB-25 Male)

MODEM
RS-232 DCE
(DB-25 Female)

Standard DB-25F to DB-25M Cable
(25 conductors)

SyncLink
RS-530 DTE
(DB-25 Male)

MODEM
RS-530 DCE
(DB-25 Female)

Standard DB-25F to DB-25M Cable
(25 conductors)

SyncLink
V.35 DTE
(DB-25 Male)

MODEM
V.35 DCE
(34 pin Female)

DB-25F to V.35M
 Adapter Cable

SyncLink
X.21 DTE
(DB-25 Male)

MODEM
X.21 DCE
(DB-15 Female)

DB-25F to DB-15M
 X.21 Adapter Cable

MicroGate Product Standard Cable Attached Device

SyncLink
V.35 DTE
(DB-25 Male)

MODEM
V.35 DCE
(34 pin Female)

Standard V.35
 F to M Cable

DB-25F to V.35M
 Adapter Cable

SyncLink
X.21 DTE
(DB-25 Male)

MODEM
X.21 DCE
(DB-15 Female)

Standard X.21
 F to M Cable

DB-25F to DB-15M
 X.21 Adapter Cable

21

CUSTOM CABLES
If the attached device does not use a standard connector, such as custom control and measurement devices, then

use the documentation for the SyncLink and custom devices to create an appropriate custom cable. Pinouts,

electrical specification and configuration options are contained in the hardware user’s manual (PDF) for your

SyncLink device.

The first step in specifying a custom cable is determining which signals are required. The SyncLink device

implements a full set of data, clock, control and status signals. Many custom devices only require data and clock

signals. Some applications use clock recovery and only have data signals. Make a list of signals that are required by

the custom device and find the equivalent signal on the SyncLink device. SyncLink signals that are not required for

an application can be left unconnected. A signal ground connection is usually required between endpoints, except

for differential signals where the common mode voltage between endpoints can be guaranteed to meet electrical

specifications without a signal ground connection. If in doubt, include a signal ground connection. A chassis/earth

ground connection is recommended, which should be tied to the cable shield.

If the attached device uses differential signals (RS-422/RS-485) with two conductors per signal, you must verify the

polarity of the signals. Each differential signal on the SyncLink device is designated A/+ and B/-. Documentation for

other devices may use A and B or + and – for each of the two conductors of a signal. Usually, you connect A/+ to

A/+, B/- to B/-. Some manufacturers use designations with an opposite sense than MicroGate. For these devices,

connect A/+ to B/-. Reversing the conductors of a signal changes the polarity. The SyncLink hardware user’s

manual has detailed descriptions of relative voltages and transitions required for signals. If you lack such

documentation for the attached device, try normal polarity first and if that does not work try reversing the

polarity. Polarity is never a problem when using standard connectors and cables as pin assignments are contained

in the specifications for the connector.

22

SOFTWARE DEVELOPMENT KIT (SDK) COMPONENTS
This section describes contents of the software development kit (SDK). The serial API is a set of C language

functions called by an application. Any language supporting the Windows “standard call” calling convention can be

used. The two main development files are:

hdlcapi\include\mghdlc.h C language header file defining calls and structures

hdlcapi\lib\mghdlc.lib C language import library for linking 32-bit applications

hdlcapi\lib\x64\mghdlc.lib C language import library for linking 64-bit applications

A C language application includes the header file so API calls and structures can be referenced. The compiled

application is linked against the import library to resolve API calls. The method for integrating these files into a

build environment depends on the tools used. Microsoft Visual Studio requires the import library to be specified in

the project settings for “additional libraries”. These files are only used for development and are not necessary for

installation on an end user system.

RUN TIME FILES

Files required to support hardware and applications on an end user system (run time files) are contained in the

drivers and tools directories as described earlier. These files should be distributed with the application and

hardware. The complete list of run time files is subject to change. Below is a list of the major components for

reference only. The normal hardware driver installation procedure (running setup or using Windows Hardware

Wizard) copies necessary files to the correct location in the Windows system directory.

setup.exe driver installation and update program

redist* libraries used by driver installation and update program

mghdlc.dll serial API user mode interface library

mghdlc32.dll 32-bit serial API user mode interface library for 64-bit systems

mghdlc.sys hardware device driver

mgslclss.dll SyncLink hardware class co-installer DLL

mghdlcpp.dll SyncLink hardware property page DLL (displays Device Manager properties)

*.inf installation description files

*.cat installation catalog files

The following utility programs are included in the RTK directory for testing and information collection purposes.

These files are not copied as part of the hardware driver installation procedure. The application writer is

responsible for installing them as needed on end user systems.

mgsltrc.exe trace utility to record device events and API calls to a file

mgsltrc.chm Windows help for trace utility

mgdump.exe saves device configuration to a text file

23

SERIAL API PROGRAMMING
This section describes direct control of a serial device by a user mode application using serial API calls. All

documentation and sample code uses the C/C++/C# programming languages. A working knowledge of C

programming in a Windows environment is required. C definitions required for configuring a SyncLink device are

contained in the mghdlc.h header file included with the SDK. This header must be included in a custom serial

user mode program.

Sample source code is included for each serial protocol. Sample code was created and tested with Visual Studio

2010.

hdlcapi\src\hdlc synchronous HDLC/SDLC application

hdlcapi\src\raw synchronous raw application

hdlcapi\src\async asynchronous application

hdlcapi\src\commapi asynchronous application using Windows COM API

hdlcapi\src\bisync byte synchronous (BISYNC/MONOSYNC) application

hdlcapi\src\2wire HDLC in 2 wire half duplex mode

hdlcapi\src\csharp HDLC sample using Microsoft C# language

hdlcapi\src\fsynth programming GT4e/USB frequency synthesizer

hdlcapi\src\gpio control and monitor GPIO signals

Use the sample code as a starting point for writing your own code. Read the README.TXT files and source code for

details on building and using the sample code. Most samples loopback data on a single device or send from one

device to another connected by a null modem or crossover cable.

Note: The sample code is not intended to be run without modification as an end user application. The sample code

WILL NOT match the specific requirements of your environment. The sample code is provided ONLY as an aid to

developing an application.

OPEN/CLOSE DEVICE

Call MgslOpen or MgslOpenByName to get a handle to a serial port for use with other API calls. MgslOpen

takes a port identifier and MgslOpenByName takes a port name. If the port exists and is not in use,

ERROR_SUCCESS and a device handle are returned. The handle is only valid for the Serial API. Do not use the

handle with standard Windows calls.

Call MgslEnumeratePorts for a list of identifiers, types and names for each available port. The type and name

can be used for display purposes when prompting the user for a port selection.

A port identifier is a 32-bit value identifying an adapter and a port. The upper 16 bits is the port number, and the

lower 16 bits is the adapter number. The MGSL_GET_ADAPTER() macro returns the adapter number of a port ID.

MGSL_GET_PORT() returns the port number of a port ID. MGSL_MAKE_PORT_ID() creates a port ID from an

adapter and port number. Single port adapters always have a port number of 0, so the port ID is the same as the

adapter number. Multiport adapters have port numbers starting with 1 up to the number of ports on the adapter.

Port names for single port adapters have the form MGHDLCx, where 'x' is the adapter number. Port names for

multiport adapters have the form MGMPxPn, where x is the adapter number and 'n' is the port number. Adapter

numbers are assigned automatically when the adapter is installed.

24

The following two calls both open the third port of the first multiport adapter.

/* open device with integer port identifier */

rc = MgslOpen(MGSL_MAKE_PORT_ID(1, 3), &dev);

if (rc != ERROR_SUCCESS)

 printf("MgslOpen error=%d\n", rc);

/* open device with device name */

rc = MgslOpenByName(ñMGMP1P3ò, &dev);

if (rc != ERROR_SUCCESS)

 printf("MgslOpen error=%d\n", rc);

The following two calls both open the only port of the second single port adapter.

/* open device with integer port identifier */

rc = MgslOpen(MGSL_MAKE_PORT_ID(2, 0), &dev);

if (rc != ERROR_SUCCESS)

 printf("MgslOpen error=%d\n", rc);

/* open device with device name */

rc = MgslOpenByName(ñMGHDLC2ò, &dev);

if (rc != ERROR_SUCCESS)

 printf("MgslOpen error=%d\n", rc);

Call MgslClose with an open handle after the port is no longer needed so other processes can open the port.

CONFIGURE DEVICE

A device must be configured to match application specific requirements. This is done using the following API calls.

MgslSetPortConfigEx Set options that take effect at driver load time, such as serial interface
type. These settings are stored in the Windows registry and are read
by the driver when loading, usually when Windows is starting. These
options are usually set using the device properties in the Windows
Device Manager instead of from an application with this call.

MgslSetParams Set options that take effect at start of communications session. This is
the main configuration call. Calling this function resets the transmitter
and receiver.

MgslSetIdleMode Set the idle (SDLC/HDLC/raw) or sync (monosync/bisync) pattern.

MgslSetOption Set options that can change during a communications session.

The main configuration call is MgslSetParams, which uses an MGSL_PARAMS structure to specify protocol

options. This call is documented in the MgslSetParams and MGSL_PARAMS sections. The following sample

configures a port for HDLC mode. The actual settings used depend on the application requirements.

25

HANDLE dev;

int rc;

MGSL_PARAMS params;

/*

 * SDLC/HDLC mode, loopback disabled

 * receive clock source = RxC input pin

 * transmit clock source = TxC input pin

 * NRZ encoding

 * output 9600bps clock on AUXCLK output pin

 * use ITU/CCITT 16-bit CRC frame check

 */

params.Mode = MGSL_MODE_HDLC;

params.Loopback = 0;

params.Flags = HDLC_FLAG_RXC_RXCPIN + HDLC_FLAG_TXC_TXCPIN;

params.Encoding = HDLC_ENCODING_NRZ;

params.ClockSpeed = 9600;

params.CrcType = HDLC_CRC_16_CCITT;

/* set current device parameters */

rc = MgslSetParams(dev, ¶ms);

if (rc != ERROR_SUCCESS)

 printf("MgslSetParams error=%d",rc);

/* set transmit idle pattern (sent between frames) */

rc = MgslSetIdleMode(dev, HDLC_TXIDLE_ONES);

if (rc != ERROR_SUCCESS)

 printf("MgslSetIdleMode error=%d", rc);

26

RECEIVING DATA

An application gets receive data using the MgslRead call.

unsigned char buf[4096];

int size = sizeof(buf);

int count;

/* get receive data */

count = MgslRead(dev, buf, size);

if (count) {

 /* count bytes returned in buf */

} else {

 /* no data available (polled mode) or error (blocking mode) */

}

MgslReadWithStatus lets applications process receive errors in addition to valid receive data or inspect

received CRC values. MgslReceive adds asynchronous notification in addition to error reporting and should only

be used in the very rare cases where the extra features are needed and well understood.

¶ MgslRead = preferred method to receive data (easy)

¶ MgslReadWithStatus = receive data and error reporting (more complex)

¶ MgslReceive = receive data, error reporting and asynchronous notification (most complex)

Behavior of the receive functions depends on the configured serial protocol (HDLC, bisync, async, etc) as described

in later sections and in the provided sample code.

HDLC/SDLC

Each buffer returned by the API is one frame of variable size. Set size argument to largest expected frame size

(typically 4K). Actual frame size is reported by return code.

Monosync/Bisync/Raw/Asynchronous/Isosynchronous

Each buffer returned by the API is a fixed size block of data, set by the size argument, and does not imply any

message boundaries. In these modes the API does not detect message boundaries, which is the responsibility of

the application. Data is not returned until size bytes are received.

Blocking and Polled Modes

Receive calls can be used in blocking or polled mode by calling MgslSetOption with the MGSL_OPT_RX_POLL

identifier. When this option is enabled, receive calls return immediately when no data is available (polling mode).

When not enabled, receive calls block until data is available (blocking mode = default).

A blocked receive call can be canceled from a different application thread with MgslCancelReceive.

MgslReceive (Advanced Features)

MgslReceive has extra error reporting and asynchronous notification features for advanced applications and

uses the MGSL_RECEIVE_REQUEST structure. The receive request structure and overlapped structure must be

initialized before each call. If data is available, ERROR_SUCCESS is returned. If no data is available and the

receiver is enabled then ERROR_IO_PENDING is returned and the caller monitors the event member of the

overlapped structure for notification of request completion. When the request is complete, the request structure

contains data and status information.

27

This sample code demonstrates request preparation, call and processing. CreateEvent, ResetEvent and

WaitForSingleObject are Windows system calls. Refer to the Windows SDK documentation for details. The

request and overlapped structures must remain valid (heap or stack allocation) until the request completes.

OVERLAPPED ol;

MGSL_RECEIVE_REQUEST *req;

int buffer_size = 4096;

/* request preparation */

ol.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);

req = malloc(sizeof(MGSL_RECEIVE_REQUEST) + buffer_size);

req->DataLength = buffer_size;

ResetEvent(ol.hEvent);

rc = MgslReceive(dev, req, &ol);

if (rc == ERROR_IO_PENDING) {

rc = WaitForSingleObject(ol.hEvent, INFINITE);

 if (rc != WAIT_OBJECT_0)

 /* wait error */

} else if (rc != ERROR_SUCCESS) {

 /* MgslReceive error */

}

/* process completed request */

if (req->Status == RxStatus_OK) {

 /* req->DataLength contains count of returned data */

/* req->DataBuffer contains returned data */

} else

/* receive error (CRC etc), no data returned */

28

SENDING DATA

An application sends data using the MgslWrite call.

unsigned char buf[4096];

int size = sizeof(buf);

int count;

/* initialize buffer with application data */

/* send data */

count = MgslWrite(dev, buf, size);

if (count) {

 /* count bytes stored in API send buffers */

} else {

 /* API send buffers full (polled) or error (blocked) */

}

MgslWrite is a simplified wrapper function for the original MgslTransmit function described below. If you do

not need the extra error reporting and asynchronous notification features of MgslTransmit, use the simpler

MgslWrite.

The format of the data depends on the protocol. For frame oriented SDLC/HDLC, each call sends a single frame of

data. For other protocols, each call sends data with no formatting, requiring the application to implement message

boundaries.

Blocking and Polled Modes

MgslWrite (and MgslTransmit) can be used in blocking or polled mode by calling MgslSetOption with

the MGSL_OPT_TX_POLL identifier. When this option is enabled, MgslWrite (or MgslTransmit) returns

immediately with a return code of zero when all API send buffers are full (polling mode). When not enabled,

MgslWrite blocks until API send buffers are available and data is accepted (blocking mode = default).

A blocked call to MgslWrite can be aborted by calling MgslCancelTransmit from a different application

thread.

MgslTransmit (advanced)

MgslTransmit offers additional error reporting and asynchronous notification. If data is accepted, the call

returns ERROR_SUCCESS. If no buffers are available then ERROR_IO_PENDING is returned and the caller

monitors the event member of the overlapped structure for notification of request completion.

Buffers are sent as soon as possible, but the request completes before the data is actually sent. MgslTransmit

can be used to determine when all buffered data has been sent. Refer to the function reference for details.

This sample code demonstrates request preparation, call and processing. CreateEvent, ResetEvent and

WaitForSingleObject are Windows system calls. Refer to the Windows SDK documentation for details. The

send buffer and overlapped structure must remain valid (heap or stack allocation) until the request completes.

29

int rc;

int size = 1024;

unsigned char buf[1024];

OVERLAPPED ol;

ol.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);

/* submit data to send */

ResetEvent(ol.hEvent);

rc = MgslTransmit(dev, buf, size, NULL, &ol);

if (rc == ERROR_IO_PENDING) {

 /* wait for free buffer */

 rc = WaitForSingleObject(ol.hEvent, INFINITE);

 if (rc != WAIT_OBJECT_0)

 /* wait error */

} else if (rc != ERROR_SUCCESS) {

 /* MgslTransmit error */

} else {

 /* data accepted */

}

WAITING FOR ALL DATA SENT

Data given to the API with MgslWrite or MgslTransmit is saved to API buffers and sent as soon as

possible. To determine when the buffered data has been completely sent use the MgslWaitAllSent call.

int rc;

/* check for all buffered data sent */

rc = MgslWaitAllSent(dev);

if (!rc) {

 /* all buffered data sent, safe to close port */

} else {

 /* busy sending buffered data (polled) or error (blocking) */

}

MgslWaitAllSent is a simplified wrapper function for the original MgslTransmit function. If you do not

need the extra error reporting and asynchronous notification features of MgslTransmit, use the simpler

MgslWaitAllSent.

Blocking and Polled Modes

MgslWaitAllSent can be used in blocking or polled mode by calling MgslSetOption with the

MGSL_OPT_TX_POLL identifier. When this option is enabled, MgslWaitAllSent returns immediately with a

return code of zero when all data is sent or non zero if still sending (polled mode). When not enabled,

MgslWaitAllSent blocks until all buffered data has been sent (blocking mode = default).

A blocked call to MgslWaitAllSent can be aborted by calling MgslCancelTransmit from a different

application thread.

30

ASYNCHRONOUS API NOTIFICATION

API calls that may not complete immediately (MgslTransmit, MgslReceive, MgslWaitEvent,

MgslWaitGpio, MgslGetTraceEvent) require an application allocated Windows OVERLAPPED structure.

Initialize the hEvent member of the overlapped structure with the handle of a Windows manual reset event

allocated with CreateEvent. Set the other members of the overlapped structure to zero. If an API call returns

ERROR_IO_PENDING, monitor the event with the Windows functions WaitForSingleObject or

WaitForMultipleObjects. When the API signals the event object, the call is complete.

The overlapped structure must remain allocated (on the stack or heap) until request completion.

For more information about the OVERLAPPED structure, Windows events and synchronization, refer to the

Windows SDK documentation.

API calls using asynchronous notification can have only one pending instance of each API call. For example, if a

MgslTransmit call is pending, the application cannot call MgslTransmit again until the original call

completes. Different API calls, such as MgslTransmit and MgslReceive, may be simultaneously pending.

Calling an API function that uses asynchronous notification while an instance of that call is already pending results

in a return code of ERROR_BUSY.

31

API FUNCTION REFERENCE

This section documents the application programming interface (API) calls used with serial devices. The calls use the

Windows standard call (__stdcall) calling convention used by most Windows libraries. The documentation uses the

C programming language, but other languages that can access the standard call conventions can also be used.

Call interface details are defined in the C language header file mghdlc.h, which must be included in C language

source files. The user mode application interface is implemented in the mghdlc.dll library which translates the

calls to access the device driver mghdlc.sys. Applications need to link against the import library mghdlc.lib.

32

MGSLCANCELGETTRACEEVENT

ULONG MgslCancelGetTraceEvent(HANDLE dev);

Arguments

dev handle to open device

Return Value

ERROR_SUCCESS call success

ERROR_INVALID_HANDLE device handle is invalid

This function cancels a pending call to MgslGetTraceEvent. The API completes the pending request with

EventType_None and signals the event member of the overlapped structure passed to

MgslGetTraceEvent. Pending requests are automatically cancelled when a device handle is closed.

33

MGSLCANCELGETWAITGPIO

ULONG MgslCancelGetWaitGpio(HANDLE dev);

Arguments

dev handle to open device

Return Value

ERROR_SUCCESS call success

ERROR_INVALID_HANDLE device handle is invalid

This function cancels a pending call to MgslWaitGpio. The API signals the hEvent member of the overlapped

structure passed to MgslWaitGpio and the contents of the GPIO_DESC structure is undefined. Pending

requests are automatically cancelled when a device handle is closed.

34

MGSLCANCELRECEIVE

ULONG MgslCancelReceive(HANDLE dev);

Argu ments

dev handle to open device

Return Value

ERROR_SUCCESS call success

ERROR_INVALID_HANDLE device handle is invalid

This function cancels a pending MgslReceive call. The API signals the hEvent member of the overlapped

structure passed to MgslReceive and the receive status is set to RxStatus_Cancel. Pending requests are

automatically cancelled when a device handle is closed.

35

MGSLCANCELTRANSMIT

ULONG MgslCancelTransmit(HANDLE dev);

Arguments

dev handle to open device

Return Value

ERROR_SUCCESS call success

ERROR_INVALID_HANDLE device handle is invalid

This function cancels a pending MgslTransmit call. The API signals the hEvent member of the overlapped

structure passed to MgslTransmit and the transmit status is set to TxStatus_Cancel. Pending requests are

automatically cancelled when a device handle is closed.

Calling this function does not disable the transmitter. The transmitter continues sending the idle pattern until

more data is sent or the user disables the transmitter with the MgslEnableTransmitter call.

36

MGSLCANCELWAITEVENT

ULONG MgslCancelWaitEvent(HANDLE dev);

Arguments

dev handle to open device

Return Value

ERROR_SUCCESS call success

ERROR_INVALID_HANDLE device handle is invalid

This function cancels a pending MgslWaitEvent call. The API signals the hEvent member of the overlapped

structure passed to MgslWaitEvent and the returned value of serial events is set to zero. Pending requests are

automatically cancelled when a device handle is closed.

37

MGSLCLOSE

ULONG MgslClose(HANDLE dev);

Arguments

dev handle to open device

Return Value

ERROR_SUCCESS call success

ERROR_INVALID_HANDLE device handle is invalid

This function closes an open device handle. The handle is not valid after this call. Pending requests are

automatically cancelled when a device handle is closed. A handle must be closed before another process can open

the device.

38

MGSLENABLERECEIVER

ULONG MgslEnableReceiver(HANDLE dev, BOOL enable);

Arguments

dev handle to open device

enable enable command value
0 = disable
1 = enable
2 = enable and force hunt mode

Return Value

ERROR_SUCCESS call success

ERROR_INVALID_HANDLE device handle is invalid

This function controls the receiver state:

Disabled receive data signal ignored
Idle receive data signal scanned for synchronization pattern (flag, start bit, etc)
Active receive data signal stored for application

The receiver starts disabled. If the receiver is disabled, the enable command makes the receiver idle and discards

buffered data, otherwise it does nothing. The disable command disables the receiver. The hunt mode command

makes the receiver idle.

A synchronization pattern (start bit, flag, sync) makes an idle receiver active. Raw synchronous mode does not use

a synchronization pattern, and the receiver is either disabled or active with both the enable and hunt mode

commands making the receiver active.

/* enable receiver (store data on receive data input) */

rc = MgslEnableReceiver(dev, 1);

if (rc != ERROR_SUCCESS)

 /* process error */

/* disable receiver (ignore receive data input) */

rc = MgslEnableReceiver(dev, 0);

if (rc != ERROR_SUCCESS)

 /* process error */

/* force receiver to idle state (look for sync pattern) */

rc = MgslEnableReceiver(dev, 2);

if (rc != ERROR_SUCCESS)

 /* process error */

39

MGSLENABLETRANSMITTER

ULONG MgslEnableTransmitter(HANDLE dev, BOOL enable);

Arguments

dev handle to open device

enable enable command value
0 = disable
1 = enable

Return Value

ERROR_SUCCESS call success

ERROR_INVALID_HANDLE device handle is invalid

This function controls the transmitter state:

Disabled transmit data signal is constant mark (one)
Idle transmit data signal sends idle or sync pattern
Active transmit data signal sends data

The transmitter starts disabled. The enable command makes the transmitter idle if disabled, otherwise it does

nothing. The disable command disables the transmitter and discards buffered data. Calling MgslTransmit

enables the transmitter if disabled. When data is ready to send, the transmitter is active.

/* enable transmitter (start sending idle pattern) */

rc = MgslEnableTransmitter(dev, 1);

if (rc != ERROR_SUCCESS)

 /* process error */

/* disable transmitter (discard unsent data) */

rc = MgslEnableTransmitter(dev, 0);

if (rc != ERROR_SUCCESS)

 /* process error */

40

MGSLENUMERATEPORTS

ULONG MgslEnumeratePorts(MGSL_PORT *ports, ULONG size, ULONG *count);

Arguments

ports pointer to buffer to receive array of MGSL_PORT structures

size size of ports buffer in bytes

count returned count of port structures

Return Value

ERROR_SUCCESS call success

ERROR_INVALID_PARAMETER ports buffer invalid or too small

ERROR_GEN_FAILURE unspecified failure

This function returns information on available serial API ports in an array of MGSL_PORT structures. Use this

information to identify and open ports with the MgslOpen call. On return the ports buffer contains the port

information and the count argument contains the number of returned entries.

Call this function with the ports argument set to NULL to return only the number of available ports in the

count argument. Use this to allocate a buffer for the ports argument on a subsequent call.

char name[] = ñMGHDLC1ò;

unsigned long i, rc, count;

int port_id = 0;

MGSL_PORT *ports;

/* get count of available ports */

rc = MgslEnumeratePorts(NULL, 0, &count);

if (rc != ERROR_SUCCESS)

 /* process error */

/* allocate memory to hold port information */

ports = malloc(count * sizeof(MGSL_PORT));

/* get port information */

rc = MgslEnumeratePorts(ports, count * sizeof(MGSL_PORT), &count);

if (rc != ERROR_SUCCESS)

 /* process error */

/* convert device name to port_id */

for (i=0; i < count; i++) {

 if (!stricmp(ports[i].DeviceName, name)) {

 port_id = ports[i].PortID;

 break;

 }

}

free(ports);

41

MGSLGETASSIGNEDRESOURCES

ULONG MgslGetAssignedResources(HANDLE dev, MGSL_ASSIGNED_RESOURCES *res);

Arguments

dev handle to open device

res pointer to MGSL_ASSIGNED_RESOURCES structure

Return Value

ERROR_SUCCESS call success

ERROR_INVALID_HANDLE invalid device handle

ERROR_INVALID_PARAMETER invalid res buffer

This function returns the embedded serial number of the device, if available. Only the SerialNumber field of

the structure is used. All other fields of the structure are unused and undefined. Only the SyncLink USB device has

an embedded serial number. For all other devices, this function has no purpose.

MGSL_ASSIGNED_RESOURCES res;

rc = MgslGetAssignedResources(dev, &res);

if (rc != ERROR_SUCCESS)

 printf("MgslGetAssignedResources error=%d\n", rc);

else

 printf(ñserial number is %s\nò, res.SerialNumber);

42

MGSLGETGPIO

ULONG MgslGetGpio(HANDLE dev, GPIO_DESC *gpio);

Arguments

dev handle to open device

gpio pointer to GPIO_DESC structure

Return Value

ERROR_SUCCESS call success

ERROR_INVALID_HANDLE invalid device handle

ERROR_INVALID_PARAMETER invalid gpio buffer

This function returns the current direction configuration and state of all general purpose I/O (GPIO) signals.

GPIO_DESC gpio;

rc = MgslGetGpio(dev, &gpio);

if (rc != ERROR_SUCCESS)

 printf("MgslGetGpio error=%d\n", rc);

else {

 /* process structure contents */

 if (gpio.dir & (1 << 5))

 printf(ñGPIO 5 is an output\nò);

 else

 printf(ñGPIO 5 is an input\nò);

 if (gpio.state & (1 << 5))

 printf(ñGPIO 5 is on\nò);

 else

 printf(ñGPIO 5 is off\nò);

}

43

MGSLGETOPTION

ULONG MgslGetOption(HANDLE dev, UINT option, UINT *value);

Arguments

dev handle to open device

option option identifier

value pointer to returned option value

Return Value

ERROR_SUCCESS call success

ERROR_INVALID_HANDLE invalid device handle

ERROR_INVALID_PARAMETER invalid option identifier or value buffer

This function returns the specified configuration or status value. Refer to MgslSetOption for a description of

valid option identifiers.

UINT value;

rc = MgslGetOption(dev, MGSL_OPT_RTS_DRIVER_CONTROL, &value);

if (rc != ERROR_SUCCESS)

 printf("MgslSetOption error=%d\n", rc);

else if (value)

 printf(ñRTS controls output drivers\nò);

else

 printf(ñRTS does not control output drivers\nò);

44

MGSLGETPARAMS

ULONG MgslGetParams(HANDLE dev, MGSL_PARAMS *params);

Arguments

dev handle to open device

params pointer to MGSL_PARAMS structure

Return Value

ERROR_SUCCESS call success

ERROR_INVALID_HANDLE invalid device handle

ERROR_INVALID_PARAMETER invalid params buffer

This function returns the current serial device configuration in a MGSL_PARAMS structure. This call gets options

that are specified once for a communications session. MgslGetPortConfigEx is used for driver load time

settings and MgslGetOption is used for settings that may change during a communications session.

MGSL_PARAMS params;

rc = MgslGetParams(dev, ¶ms);

if (rc != ERROR_SUCCESS)

 printf("MgslGetParams error=%d\n", rc);

else

 /* process structure contents */

45

MGSLGETPORTCONFIGEX

ULONG MgslGetPortConfigEx(ULONG port_id, MGSL_PORT_CONFIG_EX *config);

Arguments

port_id integer port identifier (not an open port handle)

config pointer to returned MGSL_PORT_CONFIG_EX structure

Return Value

ERROR_SUCCESS call success

ERROR_ACCESS_DENIED insufficient privilege to access registry

ERROR_INVALID_PARAMETER invalid config buffer

This function returns the current serial device configuration in a MGSL_PORT_CONFIG_EX structure, which is

used for options that take effect at driver load time. These options are usually set in the Windows Device Manager,

but this call is implemented so the options can be programmatically set.

MGSL_PORT_CONFIG_EX config;

unsigned int port_id;

/* operate on port 3 of first adapter */

port_id = MGSL_MAKE_PORT_ID(1,3);

rc = MgslGetPortConfigEx(port_id, &config);

if (rc != ERROR_SUCCESS)

 printf("MgslSetPortConfigEx error=%d\n", rc);

else

 /* process structure contents */

46

MGSLGETSERIALSIGNALS

ULONG MgslGetSerialSignals(HANDLE dev, UCHAR *signals);

Arguments

dev open port handle

config returned signal states

Return Value

ERROR_SUCCESS call success

ERROR_INVALID_HANDLE invalid port handle

ERROR_INVALID_PARAMETER invalid signals buffer

This function returns the state of serial control and status signals. Signal states are identified by macros defined in

the mghdlc.h header file. A set bit indicates an active signal. Depending on the application, some signals may not

be used or may be used for a non-standard purpose.

SerialSignal_DCD Data Carrier Detect input (MODEM or DCE detects signal from remote device)

SerialSignal_DSR Data Set Ready input (MODEM or DCE is turned on)

SerialSignal_DTR Data Terminal Ready output (serial device is active)

SerialSignal_RTS Request to Send output (serial device needs to send data)

SerialSignal_CTS Clear to Send input (serial device is allowed to send data)

SerialSignal_RI Ring Indicator input (MODEM or DCE detects incoming call)

UCHAR signals;

rc = MgslGetSerialSignals(dev, &signals);

if (rc != ERROR_SUCCESS)

 /* process error */

else if (signals & SerialSignal_DCD)

 /* DCD is active */

47

MGSLGETTRACEEVENT

ULONG MgslGetTraceEvent(HANDLE dev, MGSL_TRACE_EVENT *event, OVERLAPPED *ol);

Arguments

dev open port handle

event pointer returned trace event structure

ol pointer to Windows overlapped structure for asynchronous
notification of call completion

Return Value

ERROR_SUCCESS call success (immediate completion)

ERROR_IO_PENDING waiting for trace event (monitor overlapped structure)

ERROR_INVALID_HANDLE invalid port handle

ERROR_INVALID_PARAMETER invalid event buffer

ERROR_BUSY request already pending

This function returns a trace event. If a trace event is immediately available, ERROR_SUCCESS is returned,

otherwise ERROR_IO_PENDING is returned and the application should monitor the hEvent member of the

overlapped structure for indication of request completion. MgslCancelGetTraceEvent cancels a pending

request. Only one MgslGetTraceEvent request can be active at a time.

The mgsltrc.exe trace utility source code is located in hdlcapi\src\trace.

This function uses standard Windows asynchronous notification. This sample code demonstrates request

preparation, call and processing. CreateEvent, ResetEvent and WaitForSingleObject are Windows

system calls. Refer to Windows SDK documentation for details. The request and overlapped structures must

remain valid (heap or stack allocation) until the request completes.

OVERLAPPED ol;

MGSL_TRACE_EVENT event;

ol.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);

/* request preparation */

ResetEvent(ol.hEvent);

rc = MgslGetTraceEvent(dev, &event, &ol);

if (rc == ERROR_IO_PENDING) {

rc = WaitForSingleObject(ol.hEvent, INFINITE);

 if (rc != WAIT_OBJECT_0)

 /* wait error */

} else if (rc != ERROR_SUCCESS) {

 /* MgslGetTraceEvent error */

}

/* process contents of MGSL_TRACE_EVENT structure */

48

MGSLGETTRACELEVEL

ULONG MgslGetTraceLevel(HANDLE dev, ULONG *level);

Arguments

dev open port handle

level pointer to returned trace level value

Return Value

ERROR_SUCCESS call success

ERROR_INVALID_HANDLE invalid port handle

ERROR_INVALID_PARAMETER invalid level buffer

This function returns the current trace level that specifies which events are recorded in the trace buffer. Levels are

identified with TraceLevel_XXX macros defined in the mghdlc.h header file. See MgslSetTraceLevel

for a description of the different trace levels.

ULONG level;

rc = MgslGetTraceLevel(dev, &level);

if (rc != ERROR_SUCCESS)

 printf("MgslGetTraceLevel error=%d\n", rc);

else if (level & TraceLevel_Data)

 printf(ñData tracing is enabled\nò);

49

MGSLOPEN

ULONG MgslOpen(ULONG port_id, HANDLE *dev);

Arguments

port_id port identifier

dev pointer to returned port handle

Return Value

ERROR_SUCCESS call success

ERROR_DEVICE_IN_USE port is in use by another application

ERROR_BAD_DEVICE port_id does not exist or is not functioning

This function opens a serial device identified by port_id and returns a port handle for use by other API

functions. Call MgslClose to close the returned handle when it is no longer needed. The port ID can be obtained

from MgslEnumeratePorts.

The format of the port ID depends on the hardware type:

Single Port Adapter 32-bit integer adapter number
Example: 3 (single port adapter 3)

Multiple Port Adapter 32-bit integer with upper 16 bits = port number and lower 16 bits = adapter number
Example: 0x00040003 (port 4 of adapter 3)

Macros for manipulating port IDs are defined in the mghdlc.h header file:
MGSL_MAKE_PORT_ID(AdapterNumber,PortNumber)

MGSL_GET_ADAPTER(PortID)

MGSL_GET_PORT(PortID)

unsigned int port_id;

HANDLE dev;

/* operate on port 3 of first adapter */

port_id = MGSL_MAKE_PORT_ID(1,3);

rc = MgslOpen (port_id, &dev);

if (rc != ERROR_SUCCESS)

 printf("MgslOpen error=%d\n", rc);

else

 /* dev contains valid device handle */

50

MGSLOPENBYNAME

ULONG MgslOpenByName(char *name, HANDLE *dev);

Arguments

name port name string

dev pointer to returned port handle

Return Value

ERROR_SUCCESS call success

ERROR_DEVICE_IN_USE port is in use by another application

ERROR_BAD_DEVICE port_id does not exist or is not functioning

This function opens a serial device identified by name and returns a port handle for use by other API functions. Call

MgslClose to close the returned handle when it is no longer needed.

The format of the name depends on the hardware type:

Single Port Adapter MGHDLCx, where x = adapter number
Example: MGHDLC3

Multiple Port Adapter MGMPxPy, where x = adapter number and y = port number
Example: MGMP2P4

The port name can be obtained from the MgslEnumeratePorts call and from the Windows Device Manager.

HANDLE dev;

/* open port 3 of first adapter */

rc = MgslOpenByName(ñMGMP1P3ò, &dev);

if (rc != ERROR_SUCCESS)

 printf("MgslOpenByName error=%d\n", rc);

else

 /* dev contains valid device handle */

51

MGSLOPENTRACEHANDLE

ULONG MgslOpenTraceHandle(ULONG port_id, HANDLE *dev);

Arguments

port_id port identifier

dev pointer to returned port handle

Return Value

ERROR_SUCCESS call success

ERROR_DEVICE_IN_USE port is in use by another tracing application

ERROR_BAD_DEVICE port_id does not exist or is not functioning

ERROR_ACCESS_DENIED insufficient privilege to open a trace handle

This function opens a serial device identified by port_id and returns a port handle for use by other API

functions. Call MgslClose to close the returned handle when it is no longer needed. The port ID can be obtained

from MgslEnumeratePorts. This call requires Administrative privilege to succeed.

This call allows two processes to access a single port, one for normal use and the other for tracing. Normally only a

single process can open a port. This function is used by the mgsltrc.exe tracing utility included with the Serial

API. Source code for mgsltrc.exe is provided. The tracing API calls allow a custom serial application to
integrate tracing into an application.

unsigned int port_id;

HANDLE dev;

/* operate on port 3 of first adapter */

port_id = MGSL_MAKE_PORT_ID(1,3);

rc = MgslOpenTraceHandle(port_id, &dev);

if (rc != ERROR_SUCCESS)

 printf("MgslOpenTraceHandle error=%d\n", rc);

else

 /* dev contains valid device handle */

52

MGSLPUTTRACEEVENT

ULONG MgslPutTraceEvent(HANDLE dev, MGSL_TRACE_EVENT *event);

Arguments

dev returned port handle

event MGSL_TRACE_EVENT structure to add to trace buffer

Return Value

ERROR_SUCCESS call success

ERROR_INVALID_HANDLE port handle is invalid

ERROR_INVALID_PARAMETER event buffer is invalid

This function adds a trace event to a serial device’s trace buffer. The event is described by an

MGSL_TRACE_EVENT structure. The call fills out the EventType, DataLength and EventData fields. The

API sets the TimeStamp field. See the documentation for the MGSL_TRACE_EVENT structure for a description

of the fields and associated constants.

MGSL_TRACE_EVENT event;

/* initialize structure */

rc = MgslPutTraceEvent(dev, &event);

if (rc != ERROR_SUCCESS)

 /* process error */

53

MGSLRECEIVE

ULONG MgslReceive(HANDLE dev, MGSL_RECEIVE_REQUEST *req, OVERLAPPED *ol);

Arguments

dev open port handle

req pointer to receive request structure

ol pointer to Windows overlapped structure for asynchronous
notification of request completion

Return Value

ERROR_SUCCESS receive data returned

ERROR_IO_PENDING waiting for receive data (monitor overlapped structure)

ERROR_INVALID_HANDLE port handle is invalid

ERROR_INVALID_PARAMETER request buffer is invalid

ERROR_NOT_READY receiver is disabled and no data is available

This function returns received data to the application. The receive request structure and overlapped structure

must be initialized before each call. If data is available, ERROR_SUCCESS is returned. If data is not available and

the receiver is enabled then ERROR_IO_PENDING is returned and the caller monitors the hEvent member of

the overlapped structure for notification of request completion.

Call MgslCancelReceive to stop a pending call to MgslReceive. When the cancellation is complete, the

hEvent member of the overlapped structure will be signaled.

This sample code demonstrates request preparation, call and processing. CreateEvent, ResetEvent and

WaitForSingleObject are Windows system calls. Refer to Windows SDK documentation for details. The

request and overlapped structures must remain valid (heap or stack allocation) until the request completes.

OVERLAPPED ol;

int buffer_size = 4096;

MGSL_RECEIVE_REQUEST *req;

ol.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);

req = malloc(sizeof(MGSL_RECEIVE_REQUEST) + buffer_size);

/* preparation and call */

req->DataLength = buffer_size;

ResetEvent(ol.hEvent);

rc = MgslReceive(dev, req, &ol);

if (rc == ERROR_IO_PENDING) {

rc = WaitForSingleObject(ol.hEvent, INFINITE);

 if (rc != WAIT_OBJECT_0)

 /* wait error */

} else if (rc != ERROR_SUCCESS)

 /* MgslReceive error */

/* process completed request */

if (req->Status == RxStatus_OK)

 /* req->DataLength set to count of data in req->DataBuffer */

else

/* receive error (CRC etc), no data returned */

54

The amount of data available in the API buffers is obtained using MgslGetOption with

MGSL_OPT_RX_COUNT. Refer to the MGSL_RECEIVE_REQUEST structure reference for detailed descriptions

of the fields and values.

Raw, Bisync/Monosync Buffer Fill Level:

For raw, bisync and monosync modes, MgslReceive returns data when a driver receive buffer (256 bytes for PCI

cards, 128 bytes for USB device) fills. At low data rates this may cause too much delay between receipt of a byte

and that byte being returned to the application.

The application can reduce the number of bytes returned per call by setting the DataLength member of the

MGSL_RECEIVE_REQUEST structure to the desired count. When the value of DataLength changes from the

previous value, the receiver is reset discarding all data. Values over the default value (256 for PCI, 128 for USB)

result in the default number of bytes returned per call.

The value also controls the data transfer mode used by hardware (PIO or DMA).

128 to 256 DMA mode, value MUST be a multiple of 4
1 to 127 PIO mode, any value in this range is valid

Use lower values as needed for lower data rates and lower latency. At high data rates PIO mode may cause data

loss.

Polled Mode

Use MgslSetOption with MGSL_OPT_RX_POLL to enable polled mode. When enabled, MgslReceive returns

ERROR_BUSY and cancels the request instead of returning ERROR_IO_PENDING if no data is available to return.

The application must still allocate an overlapped structure and event even when using polled mode.

55

MGSLREAD

int MgslRead(HANDLE dev, unsigned char *buf, int size);

Arguments

dev open port handle

buf pointer to buffer to hold receive data

size size of buffer in bytes

Return Value
Number of bytes returned in buffer, or zero if timeout or error.

MgslRead returns received data to the application when available. MgslRead is a simplified wrapper function

for the MgslReceive. If you do not need the error reporting and asynchronous notification features of

MgslReceive, use the simpler MgslRead.

unsigned char buf[4096];

int size = sizeof(buf);

int count;

/* get receive data */

count = MgslRead(dev, buf, size);

if (count) {

 /* count bytes returned in buf */

} else {

 /* no data available (polled) or error (blocking) */

}

The amount of data available in the API buffers is obtained using MgslGetOption with

MGSL_OPT_RX_COUNT.

MgslRead behavior depends on the serial protocol.

HDLC/SDLC

Each buffer returned by the API is one frame of variable size. Set size argument to largest expected frame size

(typically 4K). Actual frame size is reported by return code.

Monosync/Bisync/Raw/Asynchronous/Isosynchronous

Each buffer returned by the API is a fixed size block of data, set by the size argument, and does not imply any

message boundaries. In these modes the API does not detect message boundaries, which is the responsibility of

the application. Data is not returned until size bytes are received.

For best performance set size to 256 to match the default hardware data transfer size. At low data rates this may

cause too much delay (latency) between receipt of a byte and that byte being returned to the application. Use a

lower value of size to reduce latency. When the size argument changes from the previous value, the receiver is

reset, discarding all data and the new value is used. The value also controls the data transfer mode used by

hardware (PIO or DMA/Packet).

128 to 256 DMA/Packet mode (MUST be a multiple of 4)
1 to 127 PIO mode, may cause data loss at high speed

56

Blocking and Polled Modes

MgslRead can be used in blocking or polled mode by calling MgslSetOption with the MGSL_OPT_RX_POLL

identifier. When this option is enabled, MgslRead returns immediately with a return code of zero when no data

is available (polling mode). When not enabled, MgslRead blocks until data is available (blocking mode = default).

A blocked call to MgslRead can be aborted by calling MgslCancelReceive from a different application

thread.

57

MGSLREADWITHSTATUS

int MgslReadWithStatus(HANDLE dev, unsigned char *buf,

int size, int *status);

Arguments

dev open port handle

buf pointer to buffer to hold receive data

size size of buffer in bytes

status buffer to hold returned status

Return Value
Number of bytes returned in buffer, or zero if error.

MgslReadWithStatus returns received data and/or receive error indications to the application when

available. MgslReadWithStatus is similar to MgslRead except receive errors can be returned in addition to

data. Inspect the returned status value to determine if data is valid or an error was encountered.

unsigned char buf[4096];

int size = sizeof(buf);

int count;

int status;

/* get receive data or error indication */

count = MgslReadWithStatus(dev, buf, size, &status);

if (status == RxStatus_OK) {

 // count bytes of valid data returned

} else if (status == RxStatus_CrcError) {

 // CRC error (HDLC only)

} else if (status == RxStatus_Abort) {

 // receive idle or abort pattern (HDLC only)

} else if (status == RxStatus_ShortFrame) {

 // malformed/short frame (HDLC only)

} else if (status == RxStatus_Cancel) {

 // polled mode = no data or indication available

 // blocked mode = application canceled blocked call

}

Refer to MgslRead documentation in the previous section for more details. MgslRead is the preferred call

unless an application processes receive errors or must inspect received CRC values. Refer to the receive-status

sample program that is part of the HDLC sample project for more information on processing receive errors and

inspecting received CRC values.

58

MGSLRESETTRACEBUFFERS

ULONG MgslResetTraceBuffers(HANDLE dev);

Arguments

dev returned port handle

Return Value

ERROR_SUCCESS call success

ERROR_INVALID_HANDLE port handle is invalid

This function discards all data in the API trace buffers for a serial device.

rc = MgslResetTraceBuffers(dev);

if (rc != ERROR_SUCCESS)

 /* call error */

59

MGSLSETIDLEMODE

ULONG MgslSetIdleMode(HANDLE dev, ULONG idle);

Arguments

dev returned port handle

idle idle or sync pattern

Return Value

ERROR_SUCCESS call success

ERROR_INVALID_HANDLE port handle is invalid

This function sets the idle or sync pattern. In bisync mode, this sets a 16-bit sync pattern. In monosync mode, this

sets an 8-bit sync pattern. In other modes, this sets a pattern transmitted when there is no data to send.

HDLC_TXIDLE_FLAG 8-bit flag pattern (0x7e)

HDLC_TXIDLE_ALT_ZEROS_ONES 8-bit alternating zero and one pattern (0xaa)

HDLC_TXIDLE_ZEROS 8-bit all zero pattern (0x00)

HDLC_TXIDLE_ONES 8-bit all one pattern (0xff), also called HDLC abort

HDLC_TXIDLE_CUSTOM8 arbitrary 8-bit pattern in bits [7:0]

HDLC_TXIDLE_CUSTOM16 arbitrary 16-bit pattern in bits [15:0]

The following code demonstrates the call.

unsigned char syn1 = 0x32;

unsigned char syn2 = 0x32;

/* set 16-bit sync pattern for bisync mode */

rc = MgslSetIdleMode(dev, HDLC_TXIDLE_CUSTOM_16 | (syn2 << 8) | syn1);

if (rc != ERROR_SUCCESS)

 /* call error */

/* set 8-bit sync pattern for monosync mode */

rc = MgslSetIdleMode(dev, HDLC_TXIDLE_CUSTOM_8 | syn1);

if (rc != ERROR_SUCCESS)

 /* call error */

/* set flag idle for HDLC mode */

rc = MgslSetIdleMode(dev, HDLC_TXIDLE_FLAGS);

if (rc != ERROR_SUCCESS)

 /* call error */

60

MGSLSETGPIO

ULONG MgslSetGpio(HANDLE dev, GPIO_DESC *gpio);

Arguments

dev returned port handle

gpio pointer to GPIO structure

Return Value

ERROR_SUCCESS call success

ERROR_INVALID_HANDLE port handle is invalid

ERROR_INVALID_PARAMETER invalid GPIO structure

This function sets general purpose I/O (GPIO) signal directions and states as described in a GPIO_DESC structure.

Each bit of the structure fields represent a single signal, with GPIO #0 located in bit 0, GPIO #1 located in bit 1, etc.

The number of GPIO signals depends on the specific hardware. Refer to the hardware user’s guide for your

hardware for a description of available GPIO signals.

typedef struct _GPIO_DESC

{

 UINT state; /* 0 (low) or 1 (high) */

 UINT smask; /* 0=ignore bit in state, 1=set bit in state*/

 UINT dir; /* 0=input, 1=output */

 UINT dmask; /* 0=ignore bit in dir, 1=set bit in dir */

} GPIO_DESC;

Sample code:

GPIO_DESC gpio;

ULONG rc;

memset(&gpio, 0, sizeof(gpio));

gpio.dmask = (1 << 4); /* set direction of GPIO[4] */

gpio.dir = (1 << 4); /* GPIO[4] set to output */

gpio.smask = (1 << 4); /* set state of GPIO[4] */

gpio.dir = (1 << 4); /* GPIO[4] set high */

rc = MgslSetGpio(dev, &gpio);

if (rc != ERROR_SUCCESS)

/* call error */

61

MGSLSETOPTION

ULONG MgslSetOption(HANDLE dev, UINT option, UINT value);

Arguments

dev handle to open device

option option identifier

value new option value

Return Value

ERROR_SUCCESS call success

ERROR_INVALID_HANDLE invalid device handle

ERROR_INVALID_PARAMETER invalid option identifier or value

This function sets the specified configuration value. These settings take effect at application run time. Some of

these settings can be set at driver load time (system boot) with MgslSetPortConfigEx. Settings that have an

equivalent MgslSetPortConfigEx value are noted below.

Most MgslSetOption settings take effect immediately, some are deferred until the next call to

MgslSetParams. Deferred options are identified in the descriptions below. Unless otherwise specified, the

option takes effect immediately.

The following is a list of option identifiers.

MGSL_OPT_AUXCLK_ENABLE Select AUXCLK output function.
1 = clock output (default), BRG enabled and used as clock source
0 = static low, BRG enabled for internal clock
2 = static high, BRG disabled (not compatible if internal clock required)

MGSL_OPT_CLOCK_BASE_FREQ Set base block frequency. Use only with hardware ordered with a
custom base clock or hardware with a frequency synthesizer
programmed for a custom base clock (GT2e/GT4e/USB). This option
takes effect immediately, but should be set BEFORE calling

MgslSetParams so generated clocks are calculated correctly.
MGSL_OPT_DPLL_RESET Controls DPLL reset behavior.

0 = no automatic DPLL reset
1 = automatically reset DPLL when enabling receiver
2 = one time manual DPLL reset

MGSL_OPT_ENABLE_LOCALLOOPBACK Local Loopback output state. 0=off, 1=on, default=off
MGSL_OPT_ENABLE_REMOTELOOPBACK Remote Loopback output state. 0=off, 1=on, default=off
MGSL_OPT_HALF_DUPLEX 0=disabled, 1=enabled, default=disabled

When enabled, RS422/485 outputs (TxD,AUXCLK,RTS,DTR) are active
when sending data, otherwise outputs are tri-stated (high impedance).
When sending data, the receiver input is ignored.

MGSL_OPT_INTERFACE Select interface type (RS232, V.35, RS422) with MGSL_INTERFACE_XXX
macros. Only valid for USB or PCMCIA hardware.

Set this option at driver load time with MgslSetPortConfigEx.
MGSL_OPT_MSB_FIRST Serial bit order. 0=LSB first, 1=MSB first, default = LSB first

This option does not take effect until the next call to MgslSetParams.
MGSL_OPT_NO_TERMINATION Disable serial input termination for differential interface modes (RS-

422/RS-485/V.35/RS-530A/X.21) Only valid for USB hardware. PCI
cards use jumpers and DIP switches to enable/disable termination.

Set this option at driver load time with MgslSetPortConfigEx.

62

MGSL_OPT_RTS_DRIVER_CONTROL 0=disabled, 1=enabled, default=disabled
When enabled, RTS signal state controls output drivers.
RTS on = outputs active
RTS off = outputs tri-stated (high impedance)

Set this option at driver load time with MgslSetPortConfigEx.
MGSL_OPT_RS422_OE SyncLink USB Only: 8 bit value controls RS422 output enable behavior

and state for four serial signal outputs.
[7] TXD OE Select (0=auto, 1=manual)
[6] AUXCLK OE Select (0=auto, 1=manual)
[5] DTR OE Select (0=auto, 1=manual)
[4] RTS OE Select (0=auto, 1=manual)
[3] TXD OE Manual State (0=tristate/disabled, 1=enabled)
[2] AUXCLK OE Manual State (0=tristate/disabled, 1=enabled)
[1] DTR OE Manual State (0=tristate/disabled, 1=enabled)
[0] AUXCLK OE Manual State (0=tristate/disabled, 1=enabled).
Select automatic or manual behavior. Automatic behavior is always
enabled unless half duplex or RTS control selected. Manual behavior
sets output enable state to that selected by manual state bits.

MGSL_OPT_RX_DISCARD_TOO_LARGE 0=disabled, 1=enabled, default = disabled
Silently discard receive frames larger than MgslReceive buffer.

MGSL_OPT_RX_ERROR_MASK 0=disabled, 1=enabled, default=disabled
Silently discard HDLC receive frames with errors (CRC, etc).

MGSL_OPT_RX_COUNT Read only value indicates number of bytes in receive buffers.
MGSL_OPT_TX_COUNT Read only value indicates number of bytes in send buffers.
MGSL_OPT_RX_POLL Enable polling mode for MgslReceive calls. When enabled,

MgslReceive returns ERROR_BUSY and cancels the request instead of
ERROR_IO_PENDING if no data is available to return.

MGSL_OPT_TX_POLL Enable polling mode for MgslTransmit calls. When enabled,
MgslTransmit returns ERROR_BUSY and cancels the request instead of
ERROR_IO_PENDING if no send buffers are free to hold data.

MGSL_OPT_TX_IDLE_COUNT Statistic value incremented when transmitter becomes idle after
sending data. Clear the count by calling MgslSetOption with value of 0.

MGSL_OPT_UNDERRUN_COUNT Statistic value incremented for each transmitter underrun. Clear the
count by calling MgslSetOption with value of 0.

/* set RTS to control serial output state (on or tristate) */

rc = MgslSetOption(dev, MGSL_OPT_RTS_DRIVER_CONTROL, 1);

if (rc != ERROR_SUCCESS)

 printf("MgslSetOption error=%d\n", rc);

63

MGSLSETPARAMS

ULONG MgslSetParams(HANDLE dev, MGSL_PARAMS *params);

Arguments

dev handle to open device

params pointer to configuration structure

Return Value

ERROR_SUCCESS call success

ERROR_INVALID_HANDLE invalid device handle

ERROR_INVALID_PARAMETER invalid option identifier or value

This function sets the specified configuration values. The options are usually set once per communications session.

Calling this function resets the transmitter and receiver, discarding all buffered data. Refer to the MGSL_PARAMS

structure section for a description of the fields and values.

MGSL_PARAMS params;

/* initialize structure with desired settings */

rc = MgslSetParams(dev, ¶ms);

if (rc != ERROR_SUCCESS)

 printf("MgslSetParams error=%d\n", rc);

64

MGSLSETPORTCONFIGEX

ULONG MgslSetPortConfigEx(ULONG port_id, MGSL_PORT_CONFIG_EX *config);

Arguments

port_id integer port identifier

config pointer to configuration structure

Return Value

ERROR_SUCCESS call success

ERROR_INVALID_HANDLE invalid device handle

ERROR_INVALID_PARAMETER invalid option identifier or value

This function sets the specified configuration values that are used at driver load time. Refer to the

MGSL_PORT_CONFIG_EX structure section for a description of the fields and values. These options are usually

set in the Windows Device Manager, but this call is implemented so the options can be set programmatically.

MGSL_PORT_CONFIG_EX config;

unsigned int port_id;

/* operate on port 3 of first adapter */

port_id = MGSL_MAKE_PORT_ID(1,3);

/* initialize structure with desired settings */

rc = MgslSetPortConfigEx(port_id, &config);

if (rc != ERROR_SUCCESS)

 printf("MgslSetPortConfigEx error=%d\n", rc);

65

MGSLSETSERIALSIGNALS

ULONG MgslSetSerialSignals(HANDLE dev, UCHAR *signals);

Arguments

dev handle to open device

signals new serial signals value

Return Value

ERROR_SUCCESS call success

ERROR_INVALID_HANDLE invalid device handle

This function sets the serial control output states using SerialSignal_xxx macros defined in the mghdlc.h

header file. A set bit indicates an active signal. Depending on the application, some signals may not be used or may

be used for a non-standard purpose.

SerialSignal_DTR Data Terminal Ready output (serial device is active)

SerialSignal_RTS Request to Send output (serial device wants to send data)

/* turn on both DTR and RTS output signals */

rc = MgslSetSerialSignals(dev, SerialSignal_RTS + SerialSignal_DTR);

if (rc != ERROR_SUCCESS)

 printf("MgslSetSerialSignals error=%d\n", rc);

66

MGSLSETTRACELEVEL

ULONG MgslSetTraceLevel(HANDLE dev, ULONG *level);

Arguments

dev handle to open device

level new trace level value

Return Value

ERROR_SUCCESS call success

ERROR_INVALID_HANDLE invalid device handle

This function sets the current trace level for a serial device using TraceLevel_XXX macros. Most applications

do not use this call. The mgsltrc.exe trace utility provided with the Serial API uses this call. Source code for the

trace utility is provided in the hdlcapi\src\trace directory.

TraceLevel_API API calls recorded

TraceLevel_Status serial input (CTS, DCD, DSR, RI) events recorded

TraceLevel_Transmit transmit events (underrun, completion) recorded

TraceLevel_Receive receive events (overrun, completion, idle) recorded

TraceLevel_Data send and receive data contents recorded

TraceLevel_DataLink high level link layer events (SNRM, RR, etc) recorded

TraceLevel_Error driver error conditions recorded

TraceLevel_Info driver general events recorded

TraceLevel_Detail driver detailed operation recorded

67

MGSLTRANSMIT

ULONG MgslTransmit(HANDLE dev, UCHAR *buf, ULONG size, ULONG *status, OVERLAPPED *ol);

Arguments

dev handle to open device

buf send data buffer

size number of bytes in send data buffer (may be zero, see below)

status returned send status (may be NULL, see below)

ol pointer to Windows overlapped structure used for asynchronous
notification of send completion

Return Value

ERROR_SUCCESS call success

ERROR_IO_PENDING waiting for call to complete (monitor overlapped structure)

ERROR_BUSY previous MgslTransmit call is pending

ERROR_INVALID_HANDLE invalid device handle

This function performs one of three functions depending on the arguments:

If status is NULL, call completes after buffering data to send. This is the typical case.

If status is not NULL, call completes after sending data and status indicates success or error.

If size is zero, call completes when previously buffered data is sent.

ERROR_SUCCESS indicates immediate completion and ERROR_IO_PENDING indicates the application should

monitor the hEvent member of the overlapped structure for indication of call completion. Call

MgslCancelTransmit to cancel a pending call before normal completion. When the cancellation completes,

the event member of the overlapped structure is signaled.

If size is not zero, this call enables the transmitter. The transmitter remains enabled sending the idle pattern
after all data is sent.

These values are returned if the status argument is not NULL. Values other than TxStatus_OK indicate data
was not sent. Send status is rarely required by an application. Requiring status for each call prevents a continuous
flow of data and reduces throughput.

TxStatus_OK data sent successfully

TxStatus_Underrun hardware not supplied data fast enough

TxStatus_Cancel user cancelled request before data sent

TxStatus_CtsFailure CTS went inactive in middle of sending data

Call MgslGetOption with MGSL_OPT_TX_COUNT to get the number of buffered send bytes. This is useful for
maintaining a continuous flow of data while limiting output latency by controlling the amount of buffered data.

Below is sample code demonstrating MgslTransmit.

68

int rc;

int size = 1024;

unsigned char buf[1024];

OVERLAPPED ol;

ol.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);

/* submit buffer to send, do not wait for send completion */

ResetEvent(ol.hEvent);

rc = MgslTransmit(dev, buf, size, NULL, &ol);

if (rc == ERROR_IO_PENDING) {

 /* wait for completion (wait for free buffer) */

 rc = WaitForSingleObject(ol.hEvent, INFINITE);

 if (rc != WAIT_OBJECT_0)

 /* wait error */

} else if (rc != ERROR_SUCCESS) {

 /* MgslTransmit error */

} else {

 /* immediate completion */

}

/* wait for previously submitted data to be sent */

ResetEvent(ol.hEvent);

rc = MgslTransmit(dev, NULL, 0, NULL, &ol);

if (rc == ERROR_IO_PENDING) {

 /* wait for completion (wait for all sent) */

 rc = WaitForSingleObject(ol.hEvent, INFINITE);

 if (rc != WAIT_OBJECT_0)

 /* wait error */

} else if (rc != ERROR_SUCCESS) {

 /* MgslTransmit error */

} else {

 /* immediate completion */

}

Polled Mode

Use MgslSetOption with MGSL_OPT_TX_POLL to enable polled mode. When enabled, MgslTransmit returns

ERROR_BUSY and cancels the request instead of returning ERROR_IO_PENDING if no free buffers are available to

hold data. The application must still allocate an overlapped structure and event even when using polled mode.

69

MGSLWAITEVENT

ULONG MgslWaitEvent(HANDLE dev, ULONG mask, ULONG *events, OVERLAPPED *ol);

Arguments

dev handle to open device

mask bit flags indicating events of interest

events returned event bit flags

ol pointer to Windows overlapped structure used for asynchronous
notification of request completion

Return Value

ERROR_SUCCESS call success

ERROR_IO_PENDING waiting for call to complete (monitor overlapped structure)

ERROR_BUSY a previous MgslWaitEvent call is still pending

ERROR_INVALID_HANDLE invalid device handle

ERROR_INVALID_PARAMETER invalid events buffer

This function waits for one or more events specified in the mask argument to occur. When the first specified event

occurs, the call completes with the events argument set to reflect which events occurred.

The return code ERROR_SUCCESS indicates immediate completion and ERROR_IO_PENDING indicates the
application should monitor the event member of the overlapped structure for indication of call completion.

Call MgslCancelWaitEvent to stop a pending call to MgslWaitEvent. When the cancellation is complete,
the event member of the overlapped structure will be signaled.

Both mask and events use the following bit flags defined in the mghdlc.h header file:

MgslEvent_DsrActive wait for DSR (Data Set Ready) input active

MgslEvent_DsrInactive wait for DSR (Data Set Ready) input inactive

MgslEvent_CtsActive wait for CTS (Clear to Send) input active

MgslEvent_CtsInactive wait for CTS (Clear to Send) input inactive

MgslEvent_DcdActive wait for DCD (Data Carrier Detect) input active

MgslEvent_DcdInactive wait for DCD (Data Carrier Detect) input inactive

MgslEvent_RiActive wait for RI (Ring Indicator) input active

MgslEvent_RiInactive wait for RI (Ring Indicator) input inactive

MgslEvent_ExitHuntMode wait for receiver to become active (sync/flag detect)

MgslEvent_IdleReceived wait for receiver to become idle (idle detect)

70

MGSLWAITGPIO

ULONG MgslWaitGpio(HANDLE dev, GPIO_DESC *gpio, OVERLAPPED *ol);

Arguments

dev handle to open device

gpio pointer to GPIO structure

ol pointer to Windows overlapped structure used for asynchronous
notification of request completion

Return Value

ERROR_SUCCESS call success

ERROR_IO_PENDING waiting for call to complete (monitor overlapped structure)

ERROR_BUSY a previous MgslWaitGpio call is still pending

ERROR_INVALID_HANDLE invalid device handle

ERROR_INVALID_PARAMETER invalid events buffer

This function waits for one or more GPIO signals to reach the specified states. When the first specified state occurs,

the call completes with the gpio argument set to reflect the current GPIO signal states. The dmask and dir

fields of the GPIO_DESC structure are ignored.

Before making this call, set the bits in the smask field of the GPIO_DESC structure to indicate which GPIO signals

to monitor. Set bits in the state field to specify the target state.

When the call completes, the state member of the GPIO_DESC structure is set to indicate the state of all

signals at the time the first target state is reached.

The return code ERROR_SUCCESS indicates immediate completion and ERROR_IO_PENDING indicates the
application should monitor the event member of the overlapped structure for indication of call completion.

Call MgslCancelWaitGpio to stop a pending call to MgslWaitGpio. When the cancellation is complete, the
event member of the overlapped structure will be signaled.

71

MGSLWAITALLSENT

int MgslWaitAllSent(HANDLE dev);

Arguments

dev open port handle

Return Value
Zero if success (all data sent) or error code (timeout or other error).

Check data passed to MgslWrite or MgslTransmit has been completely sent. Use this call to determine when

it is safe to reset the transmitter or close the port.

int rc;

/* check for all buffered data sent */

rc = MgslWaitAllSent(dev);

if (!rc) {

 /* all buffered data sent, safe to close port */

} else {

 /* busy sending buffered data (polled) or error (blocking) */

}

MgslWaitAllSent is a simplified wrapper function for the original MgslTransmit function. If you do not

need the extra error reporting and asynchronous notification features of MgslTransmit, use the simpler

MgslWaitAllSent.

Blocking and Polled Modes

MgslWaitAllSent can be used in blocking or polled mode by calling MgslSetOption with the

MGSL_OPT_TX_POLL identifier. When this option is enabled, MgslWaitAllSent returns immediately with a

return code of zero when all data is sent or non zero if still sending (polled mode). When not enabled,

MgslWaitAllSent blocks until all buffered data has been sent (blocking mode = default).

A blocked call to MgslWaitAllSent can be aborted by calling MgslCancelTransmit from a different

application thread.

72

int rc;

/* submit send data to API with MgslTransmit or MgslWrite */

/* block until all data is completely sent (INFINITE = no timeout) */

rc = MgslWaitAllSent(dev, INFINITE);

if (!rc) {

 /* all data sent */

} else {

 /* timeout or error */

}

/* safe to close port or wait for response */

The amount of queued send data in the API buffers is obtained using MgslGetOption with

MGSL_OPT_TX_COUNT.

73

MGSLWRITE

int MgslWrite(HANDLE dev, unsigned char *buf, int size);

Arguments

dev open port handle

buf pointer to buffer containing send data

size size of send data in bytes

Return Value
Number of bytes accepted by API or zero if buffers are full (polled) or error (blocking).

MgslWrite is a simplified wrapper function for MgslTransmit which passes data to the API to send as soon as

possible.

unsigned char buf[4096];

int size = sizeof(buf);

int count;

/* initialize buffer with application data */

/* send data */

count = MgslWrite(dev, buf, size);

if (count) {

 /* count bytes stored in API send buffers */

} else {

 /* API send buffers full (polled) or error (blocked) */

}

The amount of queued send data in the API buffers is obtained using MgslGetOption with

MGSL_OPT_TX_COUNT.

A blocked call to MgslWrite can be aborted by calling MgslCancelTransmit from a different application

thread.

The format of the data depends on the protocol. For frame oriented SDLC/HDLC, each call sends a single frame of

data. For other protocols, each call sends data with no formatting, requiring the application to implement message

boundaries.

Blocking and Polled Modes

MgslWrite can be used in blocking or polled mode by calling MgslSetOption with the

MGSL_OPT_TX_POLL identifier. When this option is enabled, MgslWrite returns immediately with a return

code of zero when all API send buffers are full (polling mode). When not enabled, MgslWrite blocks until API

send buffers are available and data is accepted (blocking mode = default).

A blocked call to MgslWrite can be aborted by calling MgslCancelTransmit from a different application

thread.

74

API STRUCTURE REFERENCE

The following C language structures are defined in the mghdlc.h header file. This header should be included in
source files that access the serial API.

75

GPIO_DESC STRUCTURE

This structure is used with the general purpose I/O (GPIO) API calls MgslGetGpio, MgslSetGpio,

MgslWaitGpio.

typedef struct _GPIO_DESC

{

 UINT state;

 UINT smask;

 UINT dir;

 UINT dmask;

} GPIO_DESC;

All fields are 32 bits. Each bit represents an I/O signal. I/O signal 0 is bit 0, signal 1 is bit 1, etc.

state each bit represents the state of an I/O signal

smask specifies which bits in state field are used

dir each bit specifies the direction of an I/O signal (0=input, 1=output)

dmask specifies which bits in dir field are used

76

MGSL_ASSIGNED_RESOURCES STRUCTURE

This structure is used with the API call MgslGetAssignedResources. Only the SerialNumber field is used.

All other fields are unused and undefined. The serial number is only available for SyncLink USB devices.

typedef struct _MGSL_ASSIGNED_RESOURCES

{

 ULONG BusType;

 ULONG BusNumber;

 ULONG DeviceNumber;

 ULONG IrqLevel;

 ULONG DmaChannel;

 ULONG IoAddress1;

 ULONG IoAddress2;

 ULONG IoAddress3;

 ULONG MemAddress1;

 ULONG MemAddress2;

 ULONG MemAddress3;

 USHORT DeviceId;

 USHORT SubsystemId;

 char SerialNumber[MGSL_MAX_SERIAL_NUMBER];

} MGSL_ASSIGNED_RESOURCES, *PMGSL_ASSIGNED_RESOURCES;

77

MGSL_PARAMS STRUCTURE

This structure is used with the configuration API calls MgslGetParams and MgslSetParams.

typedef struct _MGSL_PARAMS

{

 /* common */

 ULONG Mode; /* HDLC, asynchronous, raw, bisync, monosync */

 UCHAR Loopback; /* internal loopback mode */

 USHORT Flags; /* bit field flags */

 /* synchronous modes */

 UCHAR Encoding; /* serial encoding NRZ, NRZI, etc. */

 ULONG ClockSpeed; /* external clock speed in bits per second */

 UCHAR Addr; /* rx HDLC address filter, 0xFF = disable */

 USHORT CrcType; /* None, CRC16-CCITT, or CRC32-CCITT */

 UCHAR PreambleLength;

 UCHAR PreamblePattern;

 /* asynchronous mode */

 ULONG DataRate; /* async data rate in bits per second */

 UCHAR DataBits; /* 5 to 8 */

 UCHAR StopBits; /* 1 or 2 */

 UCHAR Parity; /* none, even, odd */

} MGSL_PARAMS, *PMGSL_PARAMS;

Note: Many constants are defined as HDLC_XXX for historical reasons, but apply to all synchronous modes

(raw/bisync/monosync/HDLC).

MODE - COMMUNICATIONS MODE/PROTOCOL

The mode field of the MGSL_PARAMS structure specifies the communications mode with an MGSL_MODE_XXX

macro. The mode determines the framing, synchronization, transparency and clocking characteristics of the serial

protocol.

MGSL_MODE_ASYNC character oriented

no external clocks

per character hardware framing

per character parity check (none/even/odd)

used for isochronous mode when DataRate set to 0

MGSL_MODE_HDLC bit synchronous

hardware framing and synchronization (flags)

hardware transparency (0 bit stuff/removal)

hardware CRC check/generation (none/16 bit/32 bit)

Note: SDLC and HDLC are the same in this context

78

MGSL_MODE_RAW bit synchronous
no hardware framing
no hardware synchronization
no hardware transparency

MGSL_MODE_BISYNC byte synchronous
16 bit hardware synchronization
no hardware framing
no hardware transparency

MGSL_MODE_MONOSYNC byte synchronous
 8 bit hardware synchronization
no hardware framing
no hardware transparency

MGSL_MODE_TDM SyncLink GT2e, GT4e, USB Only (Feb 2016 or later)

byte synchronous
external control signal synchronization
external clock signal
framing defined by fixed size data grouping

LOOPBACK – ENABLE/DISABLE INTERNAL LOOPBACK MODE

The Loopback field of the MGSL_PARAMS structure enables or disables the internal loopback mode. 0 = normal

operation, 1 = loopback mode. When enabled, the transmit data signal is connected internally to the receive data

signal and clocks are generated internally by the baud rate generator as specified by the ClockSpeed field. Use

internal loopback mode to test the operation of the serial controller without external line drivers or devices.

FLAGS – PROTOCOL OPTIONS

The Flags field of the MGSL_PARAMS structure specified miscellaneous protocol options using

HDLC_FLAG_XXX macros. The HDLC_FLAG prefix is used for historical reasons, but unless otherwise specified

these flags apply to all modes.

Receive Clock Source Flags

The serial receiver requires a clock for operation. HDLC_FLAG_RXC_xxx macros select the source of the receive

clock. The clock can be generated internally, recovered from a data signal or supplied by an external device on one

of the clock input pins. These options are mutually exclusive, the receiver can have only one clock source.

HDLC_FLAG_RXC_DPLL Receive clock is recovered from the receive data signal using the DPLL (digital

phase locked loop). The ClockSpeed member of the MGSL_PARAMS structure
specifies the expected data rate.

HDLC_FLAG_RXC_BRG Receive clock is generated with baud rate generator (BRG) at the speed specified in

the ClockSpeed member of the MGSL_PARAMS structure.

79

HDLC_FLAG_RXC_RXCPIN Receive clock is supplied by an external device on the RxC input pin.

HDLC_FLAG_RXC_TXCPIN Receive clock is supplied by an external device on the TxC input pin.

Transmit Clock Source

The serial transmitter requires a clock for operation. HDLC_FLAG_TXC_xxx macros select the source of the

transmit clock. The clock can be generated internally, recovered from a data signal or supplied by an external

device on one of the clock input pins. These options are mutually exclusive, the transmitter can have only one

clock source.

HDLC_FLAG_TXC_DPLL Transmit clock is recovered from the receive data signal using the DPLL (digital

phase locked loop). The ClockSpeed member of the MGSL_PARAMS structure
specifies the expected data rate.

HDLC_FLAG_TXC_BRG Transmit clock is generated with baud rate generator (BRG) at the speed specified

in the ClockSpeed member of the MGSL_PARAMS structure.

HDLC_FLAG_TXC_RXCPIN Transmit clock is supplied by an external device on the RxC input pin.

HDLC_FLAG_TXC_TXCPIN Transmit clock is supplied by an external device on the TxC input pin.

Digital Phase Lock Loop Divisor

The DPLL is used to recover a clock from the receive data signal. This is done using a sample/reference clock that is

a multiple of the expected data rate. This multiple is either 8 or 16. A higher sample rate (larger divisor) results in a

more accurate recovered clock. A lower divisor allows a higher expected data rate. The sample clock is limited by

the base clock frequency (default 14.7456MHz).

 HDLC_FLAG_DPLL_DIV8 data rate = reference clock divided by 8

 HDLC_FLAG_DPLL_DIV16 data rate = reference clock divided by 16

Miscellaneous Flags (any combination allowed)

HDLC_FLAG_AUTO_CTS Enable transmitter only when CTS input is active.

HDLC_FLAG_AUTO_DCD Enable receiver only when DCD input is active.

HDLC_FLAG_AUTO_RTS When set, the driver automatically asserts RTS at when sending data and negates
RTS when done sending. If RTS is active when a transmit request is made, the driver
will not manipulate the state of RTS.

80

ENCODING – SELECT REPRESENTATION OF LOGICAL 1 OR 0 DATA

Specify physical data signal representation of logical 1 or 0. Equivalent encoding names are shown in parenthesis.

BIPHASE encodings are usually used with DPLL clock recovery because they guarantee one transition per bit. The

encoding must match the application specific requirements. The levels specified below are the data signal from the

serial controller, but before the line drivers which invert the signal.

HDLC_ENCODING_NRZ NRZ (NRZ-L) unencoded data signal. high = 1, low = 0

HDLC_ENCODING_NRZB NRZB inverted data signal. high = 0, low = 1

HDLC_ENCODING_NRZI_MARK (NRZ-M) invert at start of bit if 1

HDLC_ENCODING_NRZI_SPACE (NRZI or NRZ-S) invert at start of bit if 0

HDLC_ENCODING_BIPHASE_MARK (FM1) invert at start of bit, invert at bit center if 1

HDLC_ENCODING_BIPHASE_SPACE (FM0) invert at start of bit, invert at bit center if 0

HDLC_ENCODING_BIPHASE_LEVEL (Manchester) start of bit: high=1, low=0, invert at bit center

HDLC_ENCODING_DIFF_BIPHASE_LEVEL invert at start of bit if 1, invert at bit center

CLOCKSPEED – GENERATED OR RECOVERED DATA RATE

The ClockSpeed field of the MGSL_PARAMS structure specifies the data rate of the generated (BRG) or

recovered (DPLL) clock. A clock generated by the BRG is output on the AUXCLK output pin for use by an external

device. Set to zero to disable clock generation.

 The clock is generated by dividing a fixed base clock by a 16-bit integer divisor:

 divisor = (base clock/data rate) - 1

 Only discrete rates can be generated exactly because the divisor is a 16-bit integer. The default base clock of

14.7456MHz allows exact generation of common rates: 9600, 57600, 115200 etc.

The serial card can be purchased with a different base clock. This option is installed at the factory. When a base

clock other than 14.7456MHz is installed, the driver must be configured to use the new value by calling

MgslSetOption(MGSL_OPT_CLOCK_BASE_FREQ).

ADDR – SDLC/HDLC ADDRESS FILTER

The Addr member of the MGSL_PARAMS structure controls filtering of received SDLC/HDLC frames based on an

eight bit address field. 0xFF = return all frames (no filtering), otherwise discard received HDLC frames with

addresses other than 0xFF (broadcast) or Addr value.

81

CRCTYPE – FRAME CHECK OPTION (SDLC/HDLC)

The CrcType member of the MGSL_PARAMS structure specified the frame check type used with SDLC/HDLC

frames. The selected Cyclic Redundancy Check (CRC) code is appended to sent frames and verified on receive

frames.

HDLC_CRC_NONE Don't send CRCs on transmit, don't check CRCs on receive.
HDLC_CRC_16_CCITT 16 bit CRC Polynomial: Ø Ø Ø ρ
HDLC_CRC_32_CCITT 32 bit CRC Polynomial:

Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø ρ

HDLC_CRC_RETURN_CRC combine with HDLC_CRC_16_CCITT or HDLC_CRC_32_CCITT to return CRC value (2 or 4

bytes) to application as the final bytes in the receive frame buffer
HDLC_CRC_RETURN_CRCERR_FRAME combine with HDLC_CRC_16_CCITT or HDLC_CRC_32_CCITT to return

received frames with CRC errors to application

CRC ERRORS AND ACCESSING CRC CODES

By default HDLC frames with CRC errors are discarded. The API can be configured to return both good frames and

frames with CRC errors to the application. Frames with CRC errors are identified by the status code in the receive

request structure.

Add the HDLC_CRC_RETURN_CRCERR_FRAME flag to the CRC type in the MGSL_PARAMS structure to receive both

good and bad frames as shown below.

params.CrcType = HDLC_CRC_16_CCITT | HDLC_CRC_RETURN_CRCERR_FRAME;

By default the API strips the CRC value from a received frame and only passes back the data. Add the

HDLC_CRC_RETURN_CRC flag to the CRC type in the MGSL_PARAMS structure to append the 2 or 4 byte CRC value

to the end of the frame passed back to the application.

params.CrcType = HDLC_CRC_16_CCITT | HDLC_CRC_RETURN_CRC;

These two CRC flags can be combined or used independently to achieve the desired behavior. The following

returns all frames, regardless of CRC errors, and appends the CRC value to the end of the frame buffer.

params.CrcType = HDLC_CRC_16_CCITT | HDLC_CRC_RETURN_CRCERR_FRAME |

 HDLC_CRC_RETURN_CRC;

82

PREAMBLEPATTERN – PREAMBLE PATTERN SELECTION

A preamble is a pattern sent before an SDLC/HDLC frame. The usual purpose of a preamble is to synchronize a

remote DPLL that is recovering clock information from a data stream. The length of the preamble is specified in the

PreambleLength member of the MGSL_PARAMS structure.

HDLC_PREAMBLE_PATTERN_NONE no preamble (preamble_length ignored)

HDLC_PREAMBLE_PATTERN_ZEROS all zeroes

HDLC_PREAMBLE_PATTERN_FLAGS all flags

HDLC_PREAMBLE_PATTERN_10 alternating 1's and 0's

HDLC_PREAMBLE_PATTERN_01 alternating 0's and 1's

HDLC_PREAMBLE_PATTERN_ONES all ones

PREAMBLELENGTH – PREAMBLE LENGTH SELECTION

This member of the MGSL_PARAMS structure selects the length in bytes of the preamble pattern using the

following macros:

HDLC_PREAMBLE_LENGTH_8BITS

HDLC_PREAMBLE_LENGTH_16BITS

HDLC_PREAMBLE_LENGTH_32BITS

HDLC_PREAMBLE_LENGTH_64BITS

DATARATE – ASYNCHRONOUS DATA RATE

This member of the MGSL_PARAMS structure selects the data rate for asynchronous operation. In asynchronous

mode the clock is generated internally by the BRG at x8 or x16 the data rate specified in this field. The data rate

must match that of the remote device.

DATABITS – ASYNCHRONOUS DATA BITS PER CHARACTER

This member of the MGSL_PARAMS structure selects the number of data bits per character for asynchronous

operation. This value must match that of the remote device. Valid values are 5 to 8.

STOPBITS – ASYNCHRONOUS STOP BITS PER CHARACTER

This member of the MGSL_PARAMS structure selects the number of stop bits transmitted per character for

asynchronous operation. Valid values are 1 or 2. SyncLink device receivers always recognize 1 or 2 stop bits

automatically without configuration.

PARITY – ASYNCHRONOUS CHARACTER PARITY

This member of the MGSL_PARAMS structure selects the character parity for asynchronous operation. This value

must match that of the remote device. When enabled, the selected parity bit is added to transmitted characters

and verified on received characters. Parity bits are stripped from received data before data is returned to an

application. Characters received with a parity error are discarded. Valid values are specified with the following

macros:

ASYNC_PARITY_NONE no parity used

ASYNC_PARITY_EVEN 0 or 1 bit added to maintain even number of 1 bits in character

ASYNC_PARITY_ODD 0 or 1 bit added to maintain odd number of 1 bits in character

83

MGSL_PORT_CONFIG_EX STRUCTURE

This structure is used with the configuration API calls MgslGetPortConfigEx and

MgslSetPortConfigEx. The options specified with this structure take effect at driver load time. These options

can also be set in the Windows Device Manager.

typedef struct _MGSL_PORT_CONFIG_EX

{

ULONG BaseAddress; /* obsolete, ignored */

ULONG IrqLevel; /* obsolete, ignored */

ULONG DmaChannel; /* obsolete, ignored */

ULONG BusType; /* obsolete, ignored */

ULONG BusNumber; /* obsolete, ignored */

ULONG DeviceID; /* obsolete, ignored */

ULONG MaxFrameSize; /* max number of bytes per HDLC frame */

ULONG Flags; /* various bit flag options */

} MGSL_PORT_CONFIG_EX, *PMGSL_PORT_CONFIG_EX;

MaxFrameSize

Set the maximum number of bytes expected per frame of data. Received frames larger than this value are

discarded. This also controls the maximum number of bytes accepted per MgslTransmit call.

Flags

This member controls the serial interface physical characteristics. The interface selection flags

(MGSL_INTERFACE_XXX) only apply to the PCMCIA and USB devices. All other hardware uses jumpers to select the

interface type.

MGSL_INTERFACE_MASK a bit mask that covers all bits used to select an interface type

MGSL_INTERFACE_DISABLE serial interface is disabled and tri-stated (high impedance)

MGSL_INTERFACE_RS232 serial interface is set for RS232 (single ended)

MGSL_INTERFACE_V35 serial interface is set for V.35 (mixed differential/single ended)

MGSL_INTERFACE_RS422 serial interface is set for RS422/485 (differential)

MGSL_NO_TERMINATION when set, input termination is disabled for differential modes

when clear, differential inputs use 120 Ohm termination
Applies only to USB hardware. PCI cards use jumpers or DIP switches
to control input termination.

MGSL_RTS_DRIVER_CONTROL when set, RTS controls serial outputs
RTS on = outputs enabled
RTS off = outputs disabled (tri-state, high impedance)

84

MGSL_RECEIVE_REQUEST STRUCTURE

This structure is used with the MgslReceive API call.

typedef struct _MGSL_RECEIVE_REQUEST

{

ULONG Status; /* returned request status */

ULONG DataLength; /* returned data length */

Char DataBuffer[1]; /* variable length data buffer */

} MGSL_RECEIVE_REQUEST, *PMGSL_RECEIVE_REQUEST;

The structure defines a header for a receive request. Memory for a receive request should include the size of data

buffer required by the application. For example, the following code allocates a receive request with a 4096 byte

buffer:

MGSL_RECEIVE_REQUEST *req;

req = (MGSL_RECEIVE_REQUEST*)malloc(sizeof(MGSL_RECEIVE_REQUEST) + 4096);

The DataLength field of the structure should be initialized before every call to MgslReceive to indicate the size

of the buffer.

req->DataLength = 4096;

rc = MgslReceive(hDevice, req, ol);

On request completion, the Status field indicates success or error. Most error codes apply only to SDLC/HDLC

mode. Unless the application is maintaining error statistics, the specific error code can be ignored. When Status

is RxStatus_OK, data is returned in DataBuffer and DataLength is set to the number of returned bytes.

RxStatus_OK data returned in DataBuffer, DataLength set to count of bytes

RxStatus_CrcError SDLC/HDLC frame with a CRC error was received and discarded

RxStatus_FifoOverrun hardware FIFO was full when data was received causing data loss

RxStatus_ShortFrame SDLC/HDLC frame with only one data byte was received and discarded

RxStatus_Abort SDLC/HDLC abort or idle sequence was received

RxStatus_BufferOverrun API buffers were full when data was received causing data loss

RxStatus_Cancel receive request was cancelled by user before normal completion

RxStatus_BufferTooSmall SDLC/HDLC frame larger than the receive request buffer was received

85

GENERAL PURPOSE I/O
Some models of SyncLink adapter have general purpose input/output (GPIO) signals that can be controlled and

monitored. This is done with API calls as described below.

Each adapter may have up to 32 signals, each of which may be a dedicated input, a dedicated output, or a

configurable input/output. The exact number and configuration of these signals varies with the specific adapter

and are documented in the associated Hardware User’s Guide.

If an adapter does not support GPIO, the following functions return ERROR_INVALID_PARAMETER.

All general purpose I/O operations use the following structure:

typedef struct _GPIO_DESC

{

 UINT state;

 UINT smask;

 UINT dir;

 UINT dmask;

} GPIO_DESC;

All fields are 32 bits. Each bit represents an I/O signal. I/O signal 0 is bit 0, signal 1 is bit 1, etc.

state each bit represents the state of an I/O signal

smask specifies which bits in state field are used

dir each bit specifies the direction of an I/O signal (0=input, 1=output)

dmask specifies which bits in dir field are used

MgslSetGpio sets the current state and direction configuration of one or more GPIO signals.

MgslGetGpio gets the current state and direction configuration of all GPIO signals.

MgslWaitGpio waits for specific GPIO signal states.

86

SERIAL PROTOCOL OVERVIEW
This section provides an overview of supported serial protocols to assist in selecting the correct configuration.

FRAMING AND TRANSPARENCY

Framing is a mechanism to identify boundaries of a data grouping such as a separate control signal or non data

patterns in a data signal. Transparency is a mechanism to distinguish between data and non data patterns.

Examples of framing are the flag non data pattern for HDLC or start/stop bits in asynchronous mode. Examples of

transparency are zero insertion and deletion for HDLC or escape characters for bisync mode.

SYNCHRONIZATION

Synchronization is a mechanism to indicate the presence of a data signal. This is closely related to framing. HDLC

uses flags for framing (start and end of frame markers) and synchronization (continuous flags indicate remote

device is active but not sending data). Bisync uses a 16 bit non data pattern to indicate synchronization but may

use different non data patterns to indicate the start and end of a block of data.

TIMING AND CLOCK SOURCE

Serial communications requires a timing mechanism to coordinate data transfer. This can be a separate clock

signal, an internally generated clock, or a clock recovered from a data signal. The clock frequency determines the

data transfer rate.

HDLC/SDLC

High Level Data Link Control (HDLC) is an international standard (ISO3309) based on SDLC (Synchronous Data Link

Control), a protocol developed by IBM. This document uses HDLC to refer to both HDLC and SDLC.

Data is grouped into an information field of two or more bytes. The information field may be followed by an

optional frame check sequence (FCS) such as CRC16 or CRC32. The FCS is calculated on the bits in the information

field. The information field and FCS are framed with a non data pattern 01111110 (0x7e) called a flag. The

collection of an opening flag, information field, FCS, and a closing flag is called a frame. A frame in progress can be

aborted before the closing flag by sending a non data pattern called an abort, which is 7 or more consecutive ones.

Aborted frames or frames with a FCS error should be ignored by the receiver.

An optional preamble may be sent before each frame. The preamble is useful for synchronizing a DPLL for clock

recovery. The preamble pattern should be chosen to provide the maximum transitions for a given serial encoding

Preamble Idle Info Field (Data) Flag FCS Flag Idle

Opening Flag Closing Flag

Optional FCS Optional Preamble

HDLC Frame Format

87

standard. Refer to the DPLL section for details. Preambles are usually not used for applications with a separate

data clock signal.

Leading bytes of the information field contain variable length address and control fields. The serial controller does

not process the address or control fields, and treats the entire information field as data. Interpretation of the

address and control fields is the responsibility of the device driver or application.

Data transparency is provided to distinguish between data and flag or abort patterns. This is accomplished with

zero insertion and deletion. The controller automatically inserts a zero after any sequence of five consecutive ones

in send data and automatically deletes a zero after any sequence of five consecutive ones in receive data. Zero

insertion and deletion is only applied to the information field and FCS.

HDLC may use separate data clock signals or can recover data clocks from a data signal using DPLL (digital phase

locked loop) clock recovery. There is one clock cycle per bit.

The HDLC transmitter has three states: disabled, idle, and active. The transmitter starts in the disabled state with

the transmit data signal set to a constant mark. When software enables the transmitter with a bit in a control

register the transmitter becomes idle. An idle transmitter sends a user configurable idle pattern, usually all ones or

repeated flags. When software provides data to send, the transmitter becomes active and sends a frame

containing the data. When the frame completes, the transmitter becomes idle. Software can disable the

transmitter at any time using control bits in a register.

The HDLC receiver has three states: disabled, idle (hunt), and active (synced). The receiver start in the disabled

state. When software enables the receiver with a bit in a control register, the receiver becomes idle and starts

hunting for an opening flag. When a flag is detected, the receiver is active. An active receiver stores data between

flags. When an abort sequence is detected, the receiver becomes idle. Software can disable the receiver at any

time using control bits in a register.

Disabled

TxD = Mark

Idle

TxD = Idle

Active

TxD = Frame

Load Data to FIFO

All Data Sent

Disable Disable

Enable

(FIFO not empty)

Enable

(FIFO empty)

HDLC Transmitter State Diagram

88

Disabled

Idle

(Hunt)

Active

(Synced)

Flag Detected

Abort/Idle Detected

Disable Disable

Enable

HDLC Receiver State Diagram

89

ASYNCHRONOUS

Asynchronous communication frames each character with a single start bit and one or two stop bits. Data length is

configurable for 5 to 8 data bits per character. An optional parity bit (odd or even) is appended to the data. The

idle line state is a logical 1. The start bit is a logical 0. Stop bits are a logical 1. Data is transmitted least significant

bit first followed by the optional parity bit. The total character size is the combination of the start bit, data bits,

optional parity bit, and stop bits. The total character size range is 7 to 12 bits. The number of data bits, stop bits,

and use of parity must be configured in advance to match the settings of a remote station.

Data clocks are generated internally. The data rate must be chosen in advance to match that of a remote station.

The receive clock runs at 8 or 16 times the selected data rate. This clock is used to sample the receive data line.

The start bit is detected as the falling edge from the idle condition or the stop bits of the preceding character (1 to

0).

ISOCHRONOUS

Isochronous is identical to asynchronous as described in the previous section, except a separate physical clock

signal is used with the same frequency as the data rate (1x clock). Some models of SyncLink hardware (GT4e and

USB) support the isochronous protocol by configuring the device for asynchronous communications with the

DataRate member of the MGSL_PARAMS structure set to zero.

With MGSL_MODE_ASYNC and a DataRate of zero, the Flags and ClockSpeed fields of the MGSL_PARAMS

structure control the clocking configuration. Usually a single clock supplied by a remote device drives the SyncLink

transmitter and receiver. It is possible to use different clocks for transmit and receive or to generate the clock on

the AUXCLK output by setting ClockSpeed to a non-zero value.

The benefit of isochronous is the data rate does not have to be identically configured in advance on both ends of

the connection since timing is derived from a separate clock signal. The trade off is the added expense of the extra

signal.

The following code fragment demonstrates isochronous using a single clock signal connected to the RxC input pin.

Idle = 1 5 to 8 data bits 0 Parity 1 Idle = 1

Start Bit (0) Most Significant Data Bit

Optional Parity Bit Least Significant Data Bit

Asynchronous Character Format

1 or 2 Stop Bits (1)

90

/*

 * Isochronous mode, format N-8-1

 * receive clock = RxC input pin

 * transmit clock = RxC input pin

 * single clock from remote device connected to RxC input pin

 */

params.Mode = MGSL_MODE_ASYNC;

params.Loopback = 0;

params.Flags = HDLC_FLAG_RXC_RXCPIN + HDLC_FLAG_TXC_RXCPIN;

params.Encoding = HDLC_ENCODING_NRZ; /* ignored for isochronous */

params.ClockSpeed = 0;

params.CrcType = HDLC_CRC_NONE; /* ignored for isochronous */

params.DataBits = 8;

params.StopBits = 1;

params.Parity = ASYNC_PARITY_NONE;

params.DataRate = 0; /* selects isochronous */

/* set current device parameters */

rc = MgslSetParams(dev, ¶ms);

RAW SYNCHRONOUS

Raw synchronous operation performs no framing or synchronization. Data is sent bit for bit as supplied to the

controller. Data is received bit for bit as seen on the receive data signal.

The raw transmitter has three states: disabled, idle, and active. The transmitter starts in the disabled state with the

transmit data signal set to a constant mark. When software enables the transmitter with a bit in a control register

the transmitter becomes idle. An idle transmitter sends a user configurable idle pattern. When software provides

data to send, the transmitter becomes active and sends the data in an exact bit for bit representation. When no

more data is available to send, the transmitter becomes idle. Software can disable the transmitter at any time

using control bits in a register.

Disabled

TxD = Mark

Idle

TxD = Idle

Active

TxD = Data

Load Data to FIFO

All Data Sent

Disable Disable

Enable

(FIFO not empty)

Enable

(FIFO empty)

Raw Mode Transmitter State Diagram

91

The raw receiver has two states: disabled, and active. The receiver start in the disabled state. When software

enables the receiver with a bit in a control register, the receiver becomes active and starts storing receive data

exactly bit for bit as seen on the receive data signal. Software can disable the receiver at any time using control bits

in a register.

MONOSYNC AND BISYNC

Monosync and Bisync operation is similar to raw synchronous operation. The difference is the receiver looks for an

8-bit (monosync) or 16-bit (bisync) pattern to signal synchronization and the following data is byte aligned to the

synchronization pattern.

The monosync/bisync transmitter has three states: disabled, idle, and active. The transmitter starts in the disabled

state with the transmit data signal set to a constant mark. When software enables the transmitter with a bit in a

control register the transmitter becomes idle. An idle transmitter sends repeated sync patterns (8-bit for

monosync and 16-bit for bisync). When software provides data to send, the transmitter becomes active and sends

the data in an exact bit for bit representation. When no more data is available to send, the transmitter becomes

idle. Software can disable the transmitter at any time using control bits in a register.

The transmitter does not automatically add a leading sync sequence to send data. Software must add the sync

sequence manually to any data supplied to the transmitter.

Idle (Syncs) Disabled (1) Data Sync EOB Disabled (1)

Application Supplied Open Sync Application Defined End of Block

Idle (Syncs)

Idle Pattern (repeated Sync) Idle Pattern (repeated Sync) Application Data

Disabled

(Ignore RxD)

Active

(Receiving)

Software Disable

or DCD off (Auto DCD

mode)

Software Disable

or DCD on (Auto DCD

mode)

Raw Mode Receiver State Diagram

Monosync/Bisync Block Format

92

The monosync/bisync receiver has three states: disabled, idle (hunt), and active (synced). The receiver starts in the

disabled state. When software enables the receiver (RCR[1]=1), the receiver becomes idle and starts hunting for

the sync pattern (8-bit for monosync and 16-bit for bisync). When a sync pattern is detected, the receiver is active.

An active receiver stores data bit for bit exactly as seen on the receive data signal. All data is byte aligned to the

sync pattern. The receiver remains active until software disables the receiver (RCR[1]=0) or forces the receiver to

idle/hunt (RCR[3]=1).

Hardware does not detect the end of a data block. The end of block indication varies widely for monosync and

bisync implementations and is the responsibility of software to detect. Typically an application enables the receiver

and processes received data until the end of block condition is detected. The application then forces the receiver

to idle/hunt by setting RCR[3] to 1.

Disabled

Idle

(Hunt)

Active

(Synced)

Sync Detected

Software Hunt Command

or DCD off (Auto DCD

mode)

Disable Disable

Enable

Monosync/Bisync Receiver State Diagram

Disabled

TxD = Mark

Idle

TxD = Sync

Active

TxD = Data

Load Data to FIFO

All Data Sent

Disable Disable

Enable

(FIFO not empty)

Enable

(FIFO empty)

Monosync/Bisync Transmitter State Diagram

93

TIME DIVISION MULTIPLEXING (TDM)

Note: TDM is only supported on SyncLink GT2e, GT4e and USB devices shipped February 2016 and later. Contact

Microgate for information on updating these listed devices to support TDM if purchased before that date.

Time Division Multiplexing divides a serial signal by time into two or more slots. A frame is an ordered set of slots.

Each slot represents a communication channel or data sample. The TDM implementation described here is

compatible with the TDM mode of the multichannel audio serial port (McASP) of Texas Instruments controllers.

A data signal carries slots and frames. A slot contains 8 to 32 bits of data, in increments of 4 bits. A frame contains

2 to 32, or 384 slots. Slots within a frame are always contiguous. Multiple frames may or may not be contiguous.

Data signal polarity (meaning of high or low signal) is selectable. The serial bit order is selectable, least significant

bit (LSB) first or most significant bit (MSB) first. For example, a 12 bit slot with hexadecimal value 123 is sent as

(first to last) 1100_0100_1000 for LSB first or 0001_0010_0011 for MSB first.

A clock signal provides timing information for the sync and data signals. Each clock cycle equals a single data bit.

Selectable clock polarity determines which clock edge (rising or falling) changes output signals and which samples

input signals.

A sync signal identifies the start of a frame. The sync signal is one bit or one slot in length. The first bit of a frame

occurs with the start of the sync signal or may be delayed up to two clock cycles using the sync delay option. Sync

signal polarity, active high or low, is selectable. Transmit sync length is selectable (bit or slot). The receiver

automatically accepts either bit or slot length sync pulses.

94

The TDM transmitter has three states: disabled, idle, and active and starts disabled. When enabled, the transmitter

becomes idle. When supplied data, the transmitter becomes active. When all data is sent, the transmitter becomes

idle. The transmitter may be disabled at any time, discarding unsent data.

Disabled

TxD = Mark

Idle

TxD = Mark

Active

TxD = Frame

Load Data to FIFO

All Data Sent

Disable Disable

Enable

(FIFO not empty)

Enable

(FIFO empty)

TDM Transmitter State Diagram

Sync
(Active High)

Slot 0
8-32 bits

Slot 1 Slot 2 Slot 3 Slot 0 Slot 1 Slot 2 Data

Frame(4 slots)

Active Clock Signal (Too Many Transitions to Show Edges) Clock

Sync
(Active High)

Slot 0
8 bits

 Slot 1 (partial)
Data

No bit Delay

Clock
(Active High)

Slot 0
8 bits

Slot 1

(partial)
Data

1 bit Delay

Slot 0
8 bits

Slot

1
(par
tial)

Data
2 bit Delay

95

The TDM receiver has three states: disabled, idle (hunt), and active (synced), and starts disabled. When enabled,

the receiver becomes idle. When a sync is detected, the receiver is active. An active receiver stores data until a

frame completes. When a frame completes, the receiver becomes idle. The receiver may be disabled at any time.

TDM SIGNAL MAPPING
TDM Signal Physical Serial Signal
Transmit Data (output) TxD
Transmit Sync (output) RTS
Transmit Clock (output) AUXCLK
Receive Data (input) RxD
Receive Sync (input) DCD
Receive Clock (input) RxC

USING TDM PROTOCOL WITH SERIAL API

The directory src\sample-tdm contains sample TDM code. A port must be configured with application

dependent requirements matching the attached device characteristics. Configuration must be performed in the

following order.

Configuration, Step 1: Call MgslSetOption with MGSL_OPT_TDM

This call specifies multiple TDM specific options using API header (mghdlc.h)macros. Options apply to both

transmitter and receiver unless noted otherwise. Macro and setting descriptions follow the sample code.

unsigned int tdm_options =

TDM_SYNC_DELAY_NONE | TDM_TX_SYNC_WIDTH_SLOT |

TDM_SYNC_POLARITY_NORMAL | TDM_RX_FRAME_COUNT(10) |

 TDM_SLOT_COUNT(4) | TDM_SLOT_SIZE_32BITS;

MgslSetOption(handle, MGSL_OPT_TDM, tdm_options);

Sync to Data Delay (choose one)
TDM_SYNC_DELAY_NONE, TDM_SYNC_DELAY_1BIT, TDM_SYNC_DELAY_2BITS

Transmitter Sync Pulse Length (choose one)
TDM_TX_SYNC_WIDTH_SLOT, TDM_TX_SYNC_WIDTH_BIT

 Note: receiver always works with either slot or bit length

Disabled

Idle

(Hunt)

Active

(Synced)

Sync Pulse Detected

End of frame

Disable Disable

Enable

TDM Receiver State Diagram

96

 Sync Pulse Polarity (choose one)
 TDM_SYNC_POLARITY_NORMAL (low line signal)

 TDM_SYNC_POLARITY_INVERT (high line signal)

Number of frames returned each MgslReceive call (1-256)
TDM_RX_FRAME_COUNT(frame_count)

Number of slots per frame (384 or 2-32)
TDM_SLOT_COUNT(slot_count)

Number of bits per slot (choose one, 8 to 32, increments of 4)
TDM_SLOT_SIZE_8BITS, TDM_SLOT_SIZE_12BITS, TDM_SLOT_SIZE_16BITS,

TDM_SLOT_SIZE_20BITS, TDM_SLOT_SIZE_24BITS, TDM_SLOT_SIZE_28BITS

TDM_SLOT_SIZE_32BITS

Configuration, Step 2: Call MgslSetOption with MGSL_OPT_MSB_FIRST

This call specifies the serial bit order, LSB first (value of 0) or MSB first (value of 1).

/* select bit order (0=LSB first, 1=MSB first) */

MgslSetOption(fd, MGSL_OPT_MSB_FIRST, bit_order);

Configuration, Step 3: Call MgslSetParams

This call specifies the TDM protocol, clock settings, data polarity and transmit clock speed.

MGSL_PARAMS params;

memset(¶ms, 0, sizeof(params));

params.Mode = MGSL_MODE_TDM;

/* clock polarity (choose one) */

/* normal, sample on falling edge of line signal*/

params.Flags = HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_BRG;

/* invert, sample on rising edge of line signal */

params.Flags = HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_RXC_INV |

 HDLC_FLAG_TXC_BRG | HDLC_FLAG_TXC_INV;

/* data polarity (choose one) */

params.Encoding = HDLC_ENCODING_NRZ; /* normal, 1 = low line signal */

params.Encoding = HDLC_ENCODING_NRZB; /* invert, 1 = high line signal */

params.ClockSpeed = 3686400; /* transmit clock rate in bps */

MgslSetParams(handle, ¶ms);

Sending and Receiving TDM Data

Data is transferred with MgslReceive and MgslTransmit API calls.

97

MgslReceive returns 1 to 256 frames of receive data each call as specified by TDM_RX_FRAME_COUNT above.

MgslReceive does not complete until the specified number of frames are received. Use larger values for high

data rates and small frame size to reduce system load.

One or more frames are sent with each MgslTransmit call. The number of frames sent per call can change as

needed, as long as the frames fit in the maximum buffer size (4096 bytes default). Partial frames must not be

submitted to MgslTransmit.

Each slot consumes an integer number of API buffer bytes stored in little endian order as shown below. This

applies to both MgslTransmit and MgslReceive. The application uses knowledge of the slot size to

determine slot positions within an API buffer.

Slot 1
0x23

Slot 1
0x01

Slot 2
0x56

Slot 2
0x04

Slot 1
0x89

Slot 1
0x07

Slot 2
0xFF

Buffer
Content

Frame 1 (2 slots, slot=12 bits)

Slot 2
0x0F

0 1 2 3 4 5 6
Buffer Byte

Index
7

Frame 2 (2 slots, slot=12 bits)

Slot 1
0x123

Frame 1
Slot 2
0x456

Slot 1
0x789

Frame 2
Slot 2
0xFFF

2 Frames of 2 Slots, Slot=12 bits, Stored in API Buffer

98

SERIAL ENCODING

Serial encoding converts a logical one or zero into a coded signal used on the physical connection between end

points. Send data is encoded and receive data is decoded. The table below describes each encoding standard.

The NRZ family (NRZ, NRZB, NRZI-space, NRZI-mark) has zero or one signal transitions per bit located at the start of

the bit cell. The receiver samples the data signal at the center of the bit cell. NRZ type encoding is usually used with

synchronous protocols that have a separate data clock signal. NRZ has fewer transitions per bit than biphase

encoding which allows higher data rates for a bandwidth limited physical connection.

Note: NRZI without a space or mark modifier is often used as short hand for NRZI-space.

The biphase family has one to two transitions per bit located at the beginning and center of the bit cell. The

receiver samples the data signal at ¼ and ¾ of the bit cell length. Biphase encoding is usually used with DPLL clock

recovery as it guarantees at least one transition per bit cell to keep the recovered clock synchronized.

Serial Encoding

Name Description

NRZ TxD is logical value (no encoding)

NRZB TxD is logical value inverted

NRZI-space If logical value 0, invert TxD at start of bit

NRZI-mark If logical value 1, invert TxD at start of bit

Biphase-mark

(FM1)

Invert TxD at start of bit.

If logical value 1, invert TxD at center of bit.

Biphase-space

(FM0)

Invert TxD at start of bit.

If logical value 0, invert TxD at center of bit.

Biphase-level

(Manchester)

Set TxD to logical value at start of bit.

Invert TxD at center of bit.

Differential

Biphase-level

If logical value 0, Invert TxD at start of bit.

Invert TxD at center of bit.

99

BAUD RATE GENERATOR

The serial controller has a functional unit called the baud rate generator (BRG). The BRG divides a clock input (the

base block) by a 16 bit integer (divisor) to generate a clock output. The clock output can be used internally for

transmit and receive timing, output on the AUXCLK serial output pin and as a reference clock for the DPLL

described in the next section.

The default base clock on the GT and USB devices is 14.7456MHz. Devices can be special ordered with an alternate

base clock frequency. The GT2e/GT4e cards and the USB device include a programmable frequency synthesizer

(described in a later section) than can be used as the base clock.

The BRG divides the base clock by a 16-bit integer (0 to 65535) to generate the data clock.

Ὢ ὨὭὺὭίέὶ ρ

Example 1:

Data Clock = 9600bps, Base Clock = 14.7456MHz, Divisor = (14745600/9600) – 1 = 1535
Since 1535 is an integer in the range 0 to 65535 the 9600bps clock can be generated exactly.

Example 2:
Data Clock = 1Mbps, Base Clock = 14.7456MHz, Divisor = (14745600/1000000) – 1 = 13.7456
Since13.7456 is NOT an integer, the 1Mbps clock cannot be generated exactly.

The default 14.7456MHz base clock supports exact data rates of 9600, 38400, 115200, etc.

100

DPLL CLOCK RECOVERY

Synchronous modes usually get transmit and receive timing from the transmit and receive clock inputs.

Alternatively, timing can be recovered from a received data signal using a digital phased locked loop (DPLL). This

requires the exact data rate to be known in advance and specified in ClockSpeed field of the MGSL_PARAMS

structure.

Use these options in the flags field of the MGSL_PARAMS structure to use DPLL clock recovery:

For receiver:

HDLC_FLAG_RXC_DPLL Receive clock comes from DPLL (recovered)

For transmitter (use only one):

HDLC_FLAG_TXC_DPLL Transmit clock comes from DPLL (recovered)

HDLC_FLAG_TXC_BRG Transmit clock comes from BRG (generated)

Usually the receiver uses the recovered clock and the transmitter the generated clock.

The BRG supplies the DPLL a reference clock that is 8 or 16 times greater than the data rate. Specify this setting in

the flags field of the MGSL_PARAMS structure:

HDLC_FLAG_DPLL_DIV8 reference clock = 8 x data rate (highest max rate)

HDLC_FLAG_DPLL_DIV16 reference clock = 16 x data rate (better precision)

The BRG divides the base clock by a 16-bit integer (0 to 65535) to generate the DPLL reference clock.

Ὢ ὨὭὺὭίέὶ ρ

Example 1:
Data Clock = 9600bps
DPLL Reference Clock = Data Clock * 16 = 153,600Hz
Base Clock = 14.7456MHz
Divisor = (14,745,600/153,600) – 1 = 95
Since 95 is an integer in the range 0 to 65535, the 153,600Hz reference clock can be generated exactly for
recovering the 9600bps data clock.

Example 2:
Data Clock = 10,000bps
Reference Clock = Data Clock * 16 = 160,000Hz
Base Clock = 14.7456MHz
Divisor = (14,745,600/160,000) – 1 = 91.16
Since 91.16 is NOT an integer the 160,000Hz reference clock cannot be generated exactly.

101

If the reference clock can’t be generated exactly, clock recovery can still work if the difference between the exact

rate and the actual rate is small enough and sufficient data signal transitions are maintained. A 10% difference is

acceptable if using a biphase encoding (FM or Manchester) that guarantees a data transition every clock cycle.

Custom base clocks can be ordered and installed at the factory to allow exact recovery of data rates not supported

by the standard base clock of 14.7456MHz. Contact Microgate to determine which custom base clock is required

for your needs.

SERIAL ENCODING WITH DPLL
DPLL clock recover is usually used with a biphase encoding (FM or Manchester) which guarantees a data transition

every bit. DPLL can be used with NRZI encoding when using SDLC/HDLC mode because that mode guarantees a

transition every 6 bits.

PREAMBLE WITH DPLL

When a data signal is not continuously driven a preamble before each SDLC/HDLC frame is recommended to allow

the DPLL to synchronize. Below is a list of suggested preamble patterns for different serial encodings:

Serial Encoding Preamble Pattern
HDLC_ENCODING_NRZI_SPACE (NRZI) HDLC_PREAMBLE_PATTERN_ZEROS

HDLC_ENCODING_BIPHASE_MARK (FM1) HDLC_PREAMBLE_PATTERN_ZEROS

HDLC_ENCODING_BIPHASE_SPACE (FM0) HDLC_PREAMBLE_PATTERN_ONES

HDLC_ENCODING_BIPHASE_LEVEL (Manchester) HDLC_PREAMBLE_PATTERN_01

102

FREQUENCY SYNTHESIZER
Some models of SyncLink hardware have a programmable frequency synthesizer. The output of the synthesizer

may be used as the base clock for the adapter. The synthesizer device is part number ICS307-3 manufactured by

Integrated Device Technology (idt.com).

Below is an overview of the connection to the serial controller. The synthesizer reference clock is a fixed frequency

clock source (oscillator or crystal). The synthesizer is programmed through an SPI interface connected to GPIO pins

on the serial controller. Another GPIO pin selects between the fixed frequency clock source and the synthesizer.

Refer to the Hardware User’s Guide for your SyncLink device for the exact connections, GPIO assignments and type

of fixed frequency clock source (oscillator or crystal).

The GPIO pins are controlled using the GPIO calls of the serial API as described in the GPIO section of this

document. Sample code for programming the frequency synthesizer is included in the

hdlcapi\src\fsynth directory of the SDK.

Frequency synthesizer programming consists of a 132 bit word. For a description of the fields of the word, refer to

the device datasheet for the ICS307-3 from idt.com. The 132 bit word is calculated by the Versaclock 2 Windows

software provided by idt.com based on desired output values and error tolerances.

Note: Versions of Versaclock later than 2 do not support the ICS307-3 device. Contact idt.com for the older

Versaclock 2 software required to program this device.

Fixed Frequency Clock
default 14.7456MHz
Oscillator or Crystal

Base Clock

Selection

Serial Controller

IDT ICS307-3

Programmable

Frequency

Synthesizer

Data In (DI)

Chip Select (CS)

Clock (SCLK)

GPIO

GPIO

GPIO

GPIO

Base Clock

CLK1 or CLK3 Output

Reference Clock

Input

SPI Interface

103

Values calculated by Versaclock can be copied to the Windows clipboard and then pasted into the sample

fsynth.c program. The clipboard value requires manual formatting for use by the sample code. Below are

instructions for calculating a value and using it with the sample code.

1. Run Versaclock 2 software and click Select Part Number

2. Select ICS307-03-Clock for SyncLink GT2e/GT4e cards or ICS307-03-xtal for SyncLink USB

3. Click the Continue button

4. Select Manual Pin Assignment from the Options menu

You should see three lines in the "Outputs" section labeled 8, 12, 14
SyncLink GT2e/GT4e uses pin 8 (CLK1) line
SyncLink USB uses pin 14 (CLK3) line

5. In Ref freq (MHz) edit box type: 14.7456

6. Leave Vdd pull down list set to 3.3V

7. On the appropriate line (pin 8 or pin 14) in Outputs section, enter two values:

Desired MHz : desired clock rate in MHz
Error ppm : use 100ppm (default for standard oscillators)

8. Click the Calculate button near bottom of window

9. Results appear in Actual MHz and Error ppm fields in Outputs section.

Verify the calculated error is within the specified range. If not, try generating a frequency that is a multiple of the

desired rate and use the serial controller BRG to divide that for use.

10. Click the Prog. word to Clipboard button near the bottom of window.

11. Paste the result into the fsynth.c file near an existing table entry for the table associated with your SyncLink

device type (gt4e_table for GT2e/GT4e or usb_table for USB).

Example: for 32.768MHz output on the SyncLink GT2e/GT4e card the clipboard value is:
08001400D8A00000000000000001F9FE2

12. Divide clip board value into 4 32-bit hex values of 8 digits each, with the 5th value a single digit:

08001400D8A00000000000000001F9FE2 becomes
08001400, D8A00000, 00000000, 0001F9FE, 2

13. Format the values into a table of 5 32-bit values for use as a C language array initializer. The final digit is the

most significant digit of a 32-bit value.

{0x08001400, 0xD8A00000, 0x00000000, 0x0001F9FE, 0x20000000}

104

14. Use the array initializer from the previous step to create a table entry for the desired frequency and place it in

the table.

struct freq_table_entry gt4e_table[] =

{

 {12288000, {0x29BFDC00, 0x61200000, 0x00000000, 0x0000A5FF, 0xA0000000}},

 {14745600, {0x38003C05, 0x24200000, 0x00000000, 0x000057FF, 0xA0000000}},

 {16000000, {0x280CFC02, 0x64A00000, 0x00000000, 0x000307FD, 0x20000000}},

 {20000000, {0x00001403, 0xE0C00000, 0x00000000, 0x00045E02, 0xF0000000}},

 {30000000, {0x20267C05, 0x64C00000, 0x00000000, 0x00050603, 0x30000000}},

 {32000000, {0x21BFDC00, 0x5A400000, 0x00000000, 0x0004D206, 0x30000000}},

 {3276 8000, {0x08001400, 0xD8A00000, 0x00000000, 0x0001F9FE, 0x20000000}},

 {64000000, {0x21BFDC00, 0x12000000, 0x00000000, 0x000F5E14, 0xF0000000}},

 {0, {0, 0, 0, 0, 0}} /* final entry must have zero freq */

};

Once the frequency synthesizer has been programmed, it retains that value until reprogrammed or power is lost.

After programming the frequency synthesizer and selecting the synthesizer output as the base clock, use the serial

API to inform the driver of the new value. The driver uses this value to calculate BRG and DPLL divisors.

rc = MgslSetOption(dev, MGSL_OPT_CLOCK_BASE_FREQ, 32768000);

This call needs to be made for every port on the adapter.

105

WINDOWS COMMUNICATION API (COM PORT MODE)
SyncLink serial devices support the Windows Communication API used with standard, asynchronous serial ports

(COM ports). This allows SyncLink devices to work with programs that operate with standard COM ports using the

Windows Communication API. Access the Windows Communication API using an alternate, API specific name for a

SyncLink device as described in the following section. The Windows Communication API is described in the

Windows Software Development Kit (SDK) available from Microsoft. Only asynchronous serial communications are

available when using the Windows Communication API. HDLC or other synchronous protocols require the

MicroGate Serial API.

DEVICE NAMES

SyncLink devices have a name used with the MicroGate Serial API. Single port devices use MGHDLCx, where x is the

device instance number (MGHDLC1, MGHDLC2, etc). Devices with multiple ports use MGMPxPy, where x is the

device instance number and y is the port number. The MicroGate Serial API name is displayed in the Windows

Device Manager.

SyncLink devices have an alternate name for use with the Windows Communication API. Single port devices use

MGCx, where x is the device instance number (MGC1, MGC2, etc). Devices with multiple ports use MCxy, where x

is the device instance number and y is the port number. MC11 = device 1, port 1. MC12 = device 1, port 2. The

Windows Communication API device name does not appear in the Windows device manager, as it is an API specific

alias of the actual device.

Both device names are created when a SyncLink device and drivers are installed. Normally, only one of the two

device names should be in use, with the open name controlling the hardware. Both names may be used at the

same time to auto-dial an SDLC link using asynchronous AT modem commands. When both names are open, the

Windows Communication API name controls the hardware until DTR is negated in the Windows Communication

API. This behavior allows an SDLC program to operate using the MicroGate Serial API, with an independent

Windows Communication API program sending asynchronous AT commands to setup the link. When setup

completes, the Windows Communication API program drops DTR or closes the port, returning control of the

hardware to the SDLC program.

Sample code demonstrating the use of a SyncLink device with the Windows Communication API is located in the

src\sample-commapi directory of the MicroGate Serial API development package.

